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Introduction

This project is concerned with theoretical methods for designing individualized opti-
mal strategies of breast cancer surveillance. The problem of optimal cancer surveil-
lance is set up as a search for optimal scheduling of screening examinations subject
to certain constraints on the number and timing of medical tests. The hypothesis
to be tested is that the efficacy of breast cancer detection can be enhanced through
incorporating aggregated family history information into a mathematical model de-
signed to construct optimal schedules of cancer surveillance. The proposed methods
have been validated using epidemiological data on breast cancer from the Utah Pop-
ulation Data Base (UPDB) linked to the Utah Cancer Registry (UCR). All tasks
included in the Statement of Work have been addressed.

2. Modeling cancer detection

Let T be the age at tumor onset, and W the time of spontaneous tumor detection
measured from the onset of disease. Introduce the random variable (r.v.) V to
represent tumor size at spontaneous detection. Then'V = f(W), where f : [0, 00) —
[1,00) is a deterministic function describing the law of tumor growth. It is assumed
that
(1) random variables 7" and W are absolutely continuous and independent;
(2) function f is differentiable and f* > 0, with the inverse of f denoted by g;
(3) the rate of spontaneous tumor detection is proportional to the current tumor size
with coefficient o > 0.

The probability density function (p.d.f.) of the vector Y = (T + W, V) is given
by

py(u,v) = pr(u — g(v))pv (v). (1)
In the particular case of exponential tumor growth with rate A > 0 we have
a |
pr(wv) = 380 Vpr(u— =), w20, 1<v<e @

It has been proven (Hanin, 2001) that the distribution (2) is identifiable if the den-
sity pr for the time of tumor onset is specified by the Moolgavkar—Venzon—Knudson
(MVK) two-stage model of carcinogenesis. However, the shape of the marginal dis-
tribution of tumor volume obtained from (2) is inconsistent with actual observations.
Therefore, a reasonable generalization of the above distribution is necessary.

To make the distribution (2) more flexible, suppose that the process of tumor
growth is described by the exponential law f(w) = e, w > 0, with a random
growth rate A. Specifically, we assume that the parameter 1/) is gamma distributed
with parameters a and b. Then we have

(u,v) = i.,g(%- /Ou/hw t*exp {—[b+ a(v — 1)}t}pr(u — tInv)dt

= ——-—-——-——(ln U)C:f_alr(a) /Ou(u — 5)%exp {_ﬁ%(u — 8)}pr(s)ds, (3)
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for v > 0, v > 1. Unfortunately, no identifiability results on this distribution are
available because the corresponding theoretical problem is far too difficult to ap-
proach. Once the density pr of the age at tumor onset 7" is specified within a certain
parametric family, equation (3) allows us to compute p.d.f. of the joint distribution
of age and tumor size at detection. The above model and its properties are discussed
at length in our recent paper (Bartoszynski et al., 2001) included in Appendix 1.

3. The estimation procedure.

For practical purposes, the joint distribution can be reparametrized to include the
tumor diameter rather than its volume. If U = T + W is the time (age) at tumor
detection it is easy to see that the joint p.d.f. of (U, D) is given by

3ad?b®

_ 2aaT0" [ g —olb+a((£)*-1)] B
p(u, d) dgr(a)/o g 5Vl (u — 30 1n(d/do)) 6, (4)

where dj is the diameter of a single tumor cell (do =, 1072 mm) and pys is the
p.d.f. of the MVK distribution. The model depends on six parameters: the rate
of detection «, the mean p = a/b and standard deviation o = /a/b of the gamma

distribution, and the identifiable parameters A, B, p of the MVK distribution. The
following explicit formula holds for the marginal distribution of the diameter:

3d2aab®
)= Bt al@dr — D7 ®)

It is important to note that, while three parameter appear in (5) they are not all
identifiable from data on tumor diameters. In particular, we can rewrite (5) in terms
of the two parameters 8 = ou and § = p/o as

_ 3428
C B+ (R -

p(d) (6)

A direct maximization of the likelihood generated by formula (4) in the presence
of censoring, data truncation, and/or missing size information, is practically infeasi-
ble. Each of the situations mentioned above lead to the presence in the likelihood of
complicated double integrals (many thousands of them for the datasets of interest)
and their computation is difficult to manage from the point of view of both compu-
tation time and error control. We overcome the obstacle by using a Monte Carlo EM
(MCEM) algorithm, first proposed by Wei and Tanner (1990) (see also McLachlan
and Krishnan,1997; Chan and Ledolter, 1995).

In the standard EM algorithm, the E step consists in computing the conditional
expectation of the complete data log-likelihood given the observed data. In the
MCEM algorithm the conditional expectation of the log-likelihood of the complete
data is estimated by averaging the conditional log-likelihoods of simulated sets of
complete data. The MCEM algorithm does not possess the same monotone conver-
gence properties as the standard EM algorithm, however it is shown in (Chan and



Ledolter, 1995) that, under suitable regularity conditions, an MCEM sequence will,
with high probability, get close to a maximizer of the likelihood of the observed data.

Let Y = y be the observed incomplete data, Z = z the missing data, and X =z
the unobserved complete data, with z = (y,2). Let 9 be an arbitrary element
in the parameter space, Ey(-|y) denotes the conditional expectation given ¥ = y
with 6 treated as parameter, and [x(6') is the log-likelihood of X. Given a sample
21(0), - . ., zm(6) from py(zly), the conditional pdf of Z given Y = y and 6, the MCEM
algorithm consists of two steps:

MCEstep: Q(6'16) = Z iz (o)) @),

Mstep : maximize Q(:|6).

A stopping rule for the MCEM algorithm and a discussion of the effect of the size m
of the sample z;(6) can be found in (Chan and Ledolter, 1995).

In our particular situation, the complete data can be represented as X(£) =
(Y'(&,0(¢)), Z(£,6(5))), where 6(€) is a discrete random variable that takes the values
0 when the observation is censored, 1 in case of a faflure for which we measure the
size of the tumor, and 2 for a failure when the tumor size is not recorded. If we let
T, be the time of censoring, we can then take

Y(£,0) = (T(€)), Z(&0)=(T(£),6()), when 6(¢) =0,
Y(§7 1) = (U(§)7 D(&))? Z(&, 1) =0, when 6(5) =1,

and

Y(£,2)=(U©), Z(2) =(T(€),0(£), when 4(§) =2.

Of course, in the last case knowing U,T’, and 6, implies knowing W = U — T and D
from the law of tumor growth (which is exponential in our case). The log-likelihood
for X can easily be derived.

The choice of initial values for the six parameters of the model is reduced to a
one—dimensional problem by providing a preliminary fit of the tumor size data by the
marginal distribution (6) and separately of the age data by the MVK distribution.
This allows us to obtain a starting point estimate for five out of the six parameters
incorporated into the model. In particular we can proceed by choosing the rate of
detection « as the only parameter which needs to be assigned an arbitrary initial
~ value.

4. The data

The study population consisted of people recorded in the Utah Population Database,
who were born between 1936 and 1941 and for whom follow-up information is avail-
able that places them in Utah during the years of operation of the UCR. The analysis
was performed on subcohorts based on birth year. In particular we looked at five
separate cohorts for female breast cancer. As the UCR has records post 1965 only,




Table 1: Data description.

Birth Cohort Sample Size # Failures # Missing Size Obs.

1918-23 16672 960 368
1924-29 15032 804 300
1930-35 12882 576 185
1936-41 11374 410 96
1942-47 13437 333 79

there is a left truncation effect, different for different birth cohorts, which is taken in
account by our algorithm.

The UCR has been recording cancer size since 1975. The latest data (post 1987)
offer the tumor diameter at the time of diagnosis in millimiters, while older records
only give coarser intervals. In order to simplify the analysis we have decided to
remove the grouping of the data by treating them as uniformly distributed in each
interval.

The relevant information for each birth cohort in our population is given in Table
1. Here we denote by failures the cases where we have tumor size information and
report as missing data the few cases where the presence of breast cancer was known
but no size data was available.

5. Data analysis

To adjust for birth cohort effects we extended the model (4) to allow the parameter
p in the MVK model be a function of the birth cohort. This is equivalent to using
the proportional hazards model with the birth cohort incorporated as a categorical
covariate. We first applied our estimation procedure to one-year subcohorts (B36,
B37, ..., B41) comprising the cohort of individuals born between 1936 and 1941
(Table 2).

Table 3 presents the maximum likelihood estimates of model parameters that
result from our estimation procedure when fitting the model to the birth subcohort
data described in Table 2. The resultant fit to the marginal distributions of U and
D is showx} in Figures 1-4. From Table 3, it is clear that the parameter p does not
very significantly among the sub-cohorts under study. This observation allowed us to
group birth cohort data in 5 year intervals in further data analyses required to finalize
the project (see below). It should be noted that the likelihood profile with respect




Table 2: Data description.

Birth Cohort Sample Size # Failures # Missing Size Obs.

B36 1911 87 29
B37 1932 73 16
B38 1902 76 14
B39 1870 50 11
B40 1896 63 20
B41 1925 66 16

’”

to o is very flat, thereby deteriorating the accuracy of estimation of the sensitivity
parameter a. Our computer simulations, conducted at different (fixed) values of
the parameter o, have demonstrated that the proposed procedure produces good
estimates of the product oy and the ratio p/o; even in moderate sample studies
these estimates are stable numerically and appear to be fairly close to the true
parameter values in a wide range of a.

The same analysis was performed on five separate birth cohorts, each encom-
passing a contiguous six-year period (Table 1). The resultant fit to the marginal
distributions of tumor diameter and age at diagnosis is shown in Figures 5 and 6;
the corresponding parameter estimates are given in Table 4. The model provided an
excellent description of all the cohorts under study. The mutual dependence of U
and D, as captured by the expected tumor size conditional upon age at detection, is
also consistent with the data.

6. Optimal screening schedules

The sequence of moments of time assigned for medical exams and counted from the
birth of a patient are called a screening schedule. Let T be the set of all possible
screening schedules 7 = {1, < 7» < ... < 7,}. The set 7 may be subject to (some of)
the following restrictions:

(a) n < no, where ng is an upper bound for the number of exams;

(b) 1 %3 m and 7, < M, where m and M are the earliest and the latest times for
the first and the last exams, respectively;

(¢) igr — 7 2 h > 0 for all ¢ = 1,2,...,n — 1. This condition suggests a lower

bound A for the minimal duration between any two successive exams.




Table 3: Maximum likelihood estimates of model parameters for birth sub-cohorts
B36-B41

Parameter Estimated Value

o 2.00 10~13
L 1.01 7
o 1.19 1071

A 251107

B 6.63 10~6
p(36)  1.47 1072
p(37) 1171072
p(38)  1.28 1072
p(39) 9191070
p(40)  1.35 1072

p(41)  1.39 1072




Table 4: Maximum likelihood estimates of model parameters for five birth cohorts

Parameter Estimated Value

a 2.00 10713
M 1.01 ’
o 9.09 102
A 1.45 107!

B 6.04 1073
p(18-23)  2.94 10~2
p(24-29)  3.65 1072
p(30-35)  3.33 1072
p(36-41) 4.21 1072

p(42-47)  5.11 1072
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Fig. 1
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Figure 1. Parametric versus non-parametric estimates of the survivor function for
one sample sub-cohort(B36). The solid line represents the Kaplan-Meier estimate,
while the dotted line gives the model-based parametric estimate. The two curves are
practically identical.
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Figure 2. Parametric versus non-parametric estimates of the hazard function for one
sample sub-cohort(B36). The solid line represents a local likelihood kernel-smoothed

estimate, while the dotted line shows the model-based parametric estimate.




Fig. 3
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Figure 3. Parametric versus non-parametric estimates of the tail function of the tu-
mor diameter at diagnosis for the total population studied (birth years 1936 through
1941). The solid line represents the Kaplan-Meier estimate, while the dotted line
gives the values computed using our model.
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Fig. 4
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Figure 4. This figure shows a histogram for the tumor diameter at diagnosis of
the total population studied (birth years 1936 through 1941) and the corresponding
probability density predicted by the model.
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Figure 5. Distribution densities for tumor size at detection.
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Figure 6. Hazard functions for age at detection. Solid lines: local likelihood kernel-
smoothed estimates, dotted lines: model-based parametric estimates.
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We distinguish between spontaneous (incidental) and screening based tumor de-
tections. The first occurs in the absence of or concurrently with screening and is
thought of as a continuous process. In contrast to this, screening based detection
is an instantaneous event that may occur only at the moments of the prescribed
medical exams and is therefore a discrete process. When both types of detection are
present, they can be viewed as competing risks.

For a discrete screening schedule 7 € T, we define the efficiency functional as the
Kantorovich distance between the tumor sizes Sy and S at spontaneous and com-
bined detection:

d(S, So;7) = /1 | G,y (s) — Gs(s) | ds.

Since Gg,(s) > Gs(s) for all s > 1,

d(S, So;7) = E{So} — E{S},

where E{.} stands for the expectation.

Suppose the law of tumor growth is given by fy(t) and 0 is non-random. Then

n—1 n i-
d(Sy SO;T) = Z/ Z e'°2k=:+1 fo(ri—t)

=077 jmitl

Tit1

x [1 — e~foli=9 R(1; — t)dGr(t),

where

Ro@) = [ Gwy(w)fy(w)dw, z20.

T

The extension of this formula to the case of random @ is straightforward (see the
paper by Hanin et al., 2001, included in Appendix 4).

7. The Effects of Family History

7.1. Estimation of the hazard rate

Proceeding from preliminary studies of different spline estimation procedures, we
chose to model the hazard function via quadratic splines. A quadratic spline with m
knots specifies the hazard to be of the form

2 m
Am(t) =3 voitt + 3 0t — 75)3 (1)
¢ i=0 j=1

where (z);+ = max(z,0). For each birth cohort, we fit splines with knots which are
equally spaced in the interior of the interval [Tinin, Tmaz), Where Tin;p, is the minimum
truncation age in the cohort and T},,, the maximum follow-up (failure or censoring)
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time. Restrictions are placed on the coefficients to ensure that A,(¢) remains positive
for all t. Thus with m knots the number of parameters is m + 3. Models can be
fit using maximum likelihood techniques applied to the corresponding conditional
likelihood, as discussed in Boucher and Kerber (2001a).

We have developed software designed to compute the spline estimates by max-
imizing the likelihood function using the algorithm of Powell. We start with one
knot and increase the number of knots until the fit is not improved, as determined
by the likelihood ratio test at the significance level o = 0.05. Three other subcohort
estimates of the hazard function were computed for comparison with the spline esti-
mator; an estimator of the life table type, a Gaussian kernel estimate based on the
Nelson-Aalen nonparametric estimator, and local likelihood estimators with differ-
ent kernels (uniform, Epachechnikov, and Gaussian). All the estimators mentioned
above are in good agreement with each other when applied to the UPDB data.

Using the computer programs developed in Year 1, the hazard function for can-
cer incidence has been estimated from left truncated and right censored data on
individuals identified through the UPDB and UCR.

Although the estimates become less reliable at increasing age, the hazard function
for breast cancer appears to be essentially non-decreasing in all the categories of all
familial measures considered. Thus we find no evidence of an ”immune fraction” in
this analysis. The curves for different levels of risk appear not to merge or cross,
indicating that the increased risk to those with a family history does not dissipate
after a certain age.

This study is presented at length in the paper by Boucher and Kerber (2001a)
included in Appendix 2.

7.2. Measures of Familial Aggregation as Predictors of Breast
Cancer Risk

Several measures of familial disease aggregation have been proposed, but only a few
of these are designed to be implemented at the individual level. We have evaluated
four of them in the context of breast cancer incidence. After extensive discussions,
we came to the conclusion that testing different measures of family history with
simulated data was not warranted in view of the fact that such a study would have
added little to the results of real data analysis. Therefore, we decided to focus on a
more comprehensive analysis of epidemiological data employing a wider spectrum of
potential predictors of breast cancer risk.

A population-based cohort consisting of 114,429 women born between 1874 and
1931 and at risk for breast cancer after 1965 was identified by linking the UPDB
and the UCR. Three competing methods were used to obtain predictors of familial
aggregation of risk: the number of first degree relatives with breast cancer, the
posterior probability of carrying BRCA1 or BRCA2, and the Familial Standardized
Incidence Ratio (FSIR), which weights the disease status of relatives based on their
degree of relatedness with the proband. Spline regression methods were used to
estimate the hazard function, stratified by measures of familial aggregation.

We dichotomized each of our measures of familial risk, with the high risk category

18




representing approximately 8.5% of the data in each case. This was a natural cut
point, as it represents the proportion of subjects with one or more first degree rela-
tives with breast cancer. The cutoff for FSIR roughly corresponds to a relative risk
of two to family members. The cut points for the posterior probability of BRCA1
and BRCA2 come at points where the posterior probability is rather small, less than
0.0005 in both cases.

Our previous analysis indicated that a highly significant birth-year effect exists
in the data, with a women born ten years later having an estimated 40% increased
age-specific risk. Birth-year was included as an additional covariate in all regression
analyses. The baseline risk was estimated using splines, with the proportional haz-
ards model used for birth-year and familial risk. As with most of the models, we
found that two knots were sufficient to provide an optimal fit.

The presence of a first degree relative with breast cancer and the dichotomized
FSIR variable each appear to be equally effective at distinguishing high risk sub-
jects, with the high risk category having about double the risk, while the posterior
probability of BRCA1 and BRCA2 appear to be less effective.

We performed a more detailed stratified analysis of FSIR. The category bound-
aries were the approximate 75th, 90th, and 99.9th percentiles of the (adjusted) FSIR
distribution. The upper category roughly corresponds to the reported fraction of
the general population carrying known breast cancer genes. Bootstrap confidence
bands were computed as well as an indicator of the reliability of the estimates. The
bootstrap confidence intervals are based on 100 bootstrap samples, except for the
< T5th percentile category, which is based on 20 bootstrap samples, because of the
extensive time it took to fit the models to the large datasets.

We incorporated the posterior probabilities of BRCA1 and BRCA2 and their log-
arithms, as well as loglog F'SIR as continuous variables in separate analyses, using
a proportional hazards model with birth-year as an additional covariate. The best re-
sult (in terms of statistical significance) was obtained by including the loglog FSIR,
where we get a likelihood ratio x? = 316.72 (p < 0.00001).

We also considered the indicator variable NFIRST for presence/absence of a
first degree relative, in a proportional hazards model. The behavior of the hazard
function across different strata shows that the proportional hazards assumption is
not grossly violated. The variable NFIRST was highly significant (likelihood ratio
X3 = 185.6, p < 0.0001). Addition of a second indicator variable for two or more
first degree relatives with breast cancer did not improve the likelihood significantly.
More technical details on this study are given in the paper by Boucher and Kerber
(2001b) included in Appendix 3.

7.3. Individualized strategies of optimal screening

In our analysis, the function fy(¢) was taken to be deterministic exponential with rate
A. The recjprocal of A was assumed to be gamma-distributed with shape parameter
a and scale parameter b. To evaluate the effect of family history, the data were
stratified by FSIR value and all parameters of the model were estimated from each
stratum. To prevent the strata from being too small, we divided the data in two
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Table 5: Parameter estimates obtained from the UPDB data stratified by FSIR.

Parameter FSIR<1 FSIR>1.8

! 2x10°8 2x1078
L 0.76 1.08
o 0.074 0.118
A 0.130 0.133
B 6.13 x 107° 8.72 x1075
p (1918-23) 0.034 0,045
p (1924-29) 0.037 0.060
p (1930-35) 0.044 0.064
p (1936-41) 0.057 0.079
p (1942-47) 0.048 0.087

groups defined as F'SIR < 1 and FSIR > 1.8. Using the estimation procedure
described in Sections 4 and 5 we obtained estimates of the basic parameters for each
stratum (Table 5).

In each stratum, the search for optimal screening schedules and optimal screening
efficiency was conducted for a fixed number n = 10 of screens with no restriction on
the moments of exams. The period of observation (horizon) was truncated at 100
years. The method of optimization was the exhaustive search with the step of 0.25
years.

For both groups, our algorithm results in the same optimal schedule represented
by the following sequence of screening ages (years): 7o = 74.5, 71 = 78,7 = 81,73 =
83.75,7’4 = 86.50,7‘5 = 89.25,7’6 = 92,7‘7 = 94.75,7'3 = 97.50,7‘9 = 100. For this
schedule, the intervals A; := 7, — 7,1, 7 = 1,...,n, between two successive exams
are as follows: A; = 3.5, Ay = 3.0,A3 = 3.0, Ay = 2.75, A5 = 2.75, Ag = 2.75, A7 =
2.75, Ag =42.75,Ag = 2.5. Thus the structure of the optimal schedule appears to
be the same for both groups thereby indicating that individualization of screening
schedules is not warranted. However, this unique optimal schedule does provide a
tangible gain (relative to the absence of screening) in terms of the mean tumor volume
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Table 6: The percent decrease in the mean tumor volume under the optimal screening
schedule (relative to the absence of screening).

Birth Cohort FSIR<1 FSIR>1.8

1918-23 0.14% 0.19%
1924-29 0.14% 0.25%
1930-35 0.16% 0.82%
1936-41 0.21% 0.32%
1942-47 0.18% 0.34%

’

at diagnosis, the gain being higher in the high risk group (F.SIR > 1.8) as evidenced
by the results shown in Table 6. The optimal schedule depends quite strongly on the
sensitivity parameter a which needs to be more reliably estimated from similar data
generated by randomized screening trials. A research paper summarizing the above
results is in preparation.

8. Key Research Accomplishments

Our key accomplishments can be summarized briefly as follows:

e We have developed computer programs implementing four statistical procedures
for estimation of the hazard function; these procedures accommodate data subjected
to random truncation and censoring.

e A new method has been developed for designing optimal schedules of breast
cancer surveillance specially adapted to population-based settings.

o Numerical experiments have shown that mathematical and computational prob-
lems of optimal cancer surveillance are tractable within the framework of the pro-
posed model of cancer surveillance and detection.

e The joint distribution of age and tumor size at diagnosis has been derived
within the framework of the proposed model of the natural history of breast cancer.

A Monte-Carlo EM algorithm has been developed for estimation of the param-
eters 1ncorporated into the joint distribution of age and tumor size at detection.

e The usefulness of the estimation procedure was evaluated by computer simu-
lations.




e The estimation procedure was applied to epidemiological data on individuals
identified through the UPDB and stratified by one of the most widely accepted
indicator of family history of breast cancer (FSIR). This application provided values
of model parameters to be used for evaluating potential benefits from individualized
schedules.

e Given the estimated parameter values optimal schedules have been constructed
using the stratified data on breast cancer. This study has shown that the optimal
schedule of breast cancer screening is robust to variations in familial risk.

9. Reportable Outcomes

Publications

1. Bartoszynski, R., Edler, L., Hanin, L., Kopp-Schneider, A., Pavlova,L., Tsodikov,
A., Zorin, A., and Yakovlev, A. Modeling cancer detection: Tumor size as a source
of 1nformat10n on unobservable stages of carc1nogene31s Mathematical Biosciences
171: 113-142, 2001.

2. Boucher, K.M. and Kerber, R.A. The shape of the hazard function for cancer
incidence, Mathematical and Computer Modelling 33: 1361-1376, 2001.

3. Boucher, K.M. and Kerber, R.A. Measures of Familial Aggregation as Predictors
of Breast Cancer Risk, Journal of Epidemiology and Biostatistics 6(5): 377-385, 2001.
4. Hanin, L.G., Tsodikov, A.D., and Yakovlev, A.Y. Optimal schedules of cancer
surveillance and tumor size at detection, Mathematical and Computer Modelling 33:
1419-1430, 2001.

5. Hanin, L.G., Identification problem for stochastic models with application to
carcinogenesis, cancer detection, and radiation biology, Discrete Dynamics in Nature
and Society, 6: 1-14, 2002.

Presentations and Meeting Abstracts

1. Yakovlev, A.Y., Tsodikov, A.D., and Hanin, L.G. Optimal schedules of breast
cancer surveillance, Abstract, Era of Hope Meeting, Atlanta, June 2000.

2. Boucher, K.M. and Kerber, R.A. The shape of the hazard function for cancer
incidence, Abstract, Era of Hope Meeting, Atlanta, June 2000.

3. Yakovlev, A.Y. Stochastic modeling of carcinogenesis and cancer detection, In-
vited presentation, Minisimposium Cancer Modeling, First SIAM Conference on the
Life Sciences, Boston, March 7-8, 2002.

Awards

1. Grant 1 U0l CA88177-01, NIH/NCI, Mechanistic Modeling of Breast Cancer
Surveillance, RFA ”Cancer Intervention and Surveillance Network (CISNET)”, P.L.:
Yakovlev, A.Y., 09/01/00 - 08/31/04, total costs: $ 537,653.
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2. Grant proposal “Quantitative insight into the natural history of breast cancer”
(PI: A. Yakovlev), DOD Breast Cancer Program, 2002.

10. Conclusions

A version of the Monte Carlo EM algorithm has been developed for maximum like-
lihood inference based on the distribution of age and tumor size at detection. This
algorithm was tested by computer simulations and an application to breast cancer
data obtained from the UPDB and UCR datasets. Notwithstanding the fact that the
likelihood profile with respect to the sensitivity parameter & appears to be very flat,
the proposed procedure produces good estimates of the product au and the ratio
w/o; these estimates are quite insensitive to specific values of the parameter a.

We have explored several methods of measuring familial aggregation at the indi-
vidual level as applied to breast cancer data. All prove to be significant predictors of
individual risk. Judging by the difference in risk estimates, as well as the likelihood
ratio test, presence of a first degree relative and FSIR appear to be better indicators
of increased risk than the posterior probability of BRCA1 or BRCA2. Proceeding
from these results, we used the simplest indicator, namely the presence of a first
degree relative with breast cancer, for the purposes of data stratification. We con-
structed optimal schedules of cancer surveillance (screening) to each data stratum.
The next step was comparing the optimal schedules thus obtained and evaluate their
efficacy in terms of the proposed criterion of optimality.

Given the estimated parameter values an optimal schedule has been constructed
using the available data on breast cancer. This schedule provides a maximum reduc-
tion of the mean tumor size at detection over a set of discrete screening schedules.
While the efficacy of the optimal schedule tends to be higher in high risk families,
its structure appears to be robust to variations in breast cancer risk. The optimal
schedule appears to depend quite strongly on parameters characterizing the sensi--
tivity of spontaneous and screen-based detection. More reliable estimates of these
parameters are needed. This is likely to be accomplished by analyzing similar data
generated by randomized screening trials. The question of whether the expected
gain in the mean tumor size at diagnosis translates into a tangible survival benefit
remains to be addressed in future studies.

So What?

This study shows that the efficacy of breast cancer screening (in terms of tumor size
at diagnosis) varies depending on family history and genetic predisposition for breast
cancer. However, this effect is not sufficiently strong to change the structure of an
optimal schedule of breast cancer screening designed to maximize the reduction of
tumor size.at the time of detection. Further studies are needed to establish a link
between the effect of screening on the distribution of tumor size at detection and
post-treatment survival of patients diagnosed with breast cancer.
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Abstract—The paper explores methodological and mathematical aspects of a new approach to
constructing optimal schedules of cancer screening. This approach consists of systematic use of tumor
size at detection, combining stochastic models of tumor latency, tumor growth and tumor detection,
and employing a new biologically natural screening efficiency criterion defined as the Kantorovich
distance between the tumor size at spontaneous detection in the absence of screening and the tumor
size at detection when both spontaneous and screening based mechanisms are in place. An explicit
formula for the efficiency functional is obtained. Sample calculations suggest that in the case of
exponential tumor growth, the optimal screening schedules with a fixed number of exams have a
trend to uniformity. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords——Screening, Optimal schedules, Tumor onset, Tumor size, Carcinogenesis models.

1. INTRODUCTION

Because of the significant cancer incidence and progress of tumor detection technology, cancer
surveillance and screening are becoming increasingly important and costly public health problems.
It is clear that appropriate mathematical methods are indispensable for a more effective manage-
ment of the caseload through designing optimal surveillance strategies. Interest in exploring this
avenue has quickened in the past few years [1-17].

The present work discusses methodological aspects of a new approach to optimization of cancer
screening allowing for cancer detection at the earliest stages of tumor development. This makes
the chances of tumor cure more favorable, reducing the probability of tumor recurrence. The
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problem of optimal cancer surveillance is set up as a search for optimal scheduling of screens
subject to certain constraints on the number and timing of medical exams. Problems of a similar
nature have already been addressed in the literature. Yakovlev and Tsodikov [1] have developed
methods for constructing optimal surveillance strategies based on the minimum delay time cri-
terion, given that the total number of examinations is fixed; see also [2]. They used dynamic
programming methodology to solve the associated optimization problem. Their results show that
this approach holds much promise for further practical use. As one example, the current practice
for the breast cancer post-treatment surveillance at Curie Institute (Paris, France) is to examine
the patients once per semester for the first four years, once per year for the next six years, and
once every two years for the remaining period. For this strategy, the estimated false negative
rate appears to be equal to 0.2 with the mean delay of the recurrence detection 4.1 months, Tak-
ing advantage of a previously proposed parametric model of tumor recurrence [3], the authors
constructed the optimal strategy that provides a 33% reduction in the delay time, with the tests
that comprise the optimal surveillance schedule tending to be more frequent when the hazard rate
for the time to tumor is high. However, there are two weak points in this approach. First, the
probability of tumor detection is assumed to be independent of the process of tumor regrowth.
Second, estimation of the tumor onset time distribution is feasible only if a sample of diagnostic
times produced by a discrete surveillance program with known false negative rate is available.
The same applies equally to prediagnosis screening programs.

An alternative approach to the problem is to minimize the average cost of surveillance account-
ing for both examination costs and costs of late detection [1,4-15}. Since the two cost constituents
are linked in the optimization procedure, the cost-utility approach makes it possible to search for
both the optimal number of examinations and their sequence in time. However, the costs of late
detection are usually very difficult to evaluate. For yet another optimization criterion hased on
the power of a statistical test for mortality rates, the reader is referred to [16].

Focusing our effort on possible medical rather than economic benefits, we propose to explore
a new approach to the problem which is based on tumor size at detection. Tumor size is one
of the most clinically significant characteristics of tumor maturity that determines lareely the
probability of both spontaneous and screening based tumor detection. This approach makes it
possible to utilize data on tumor size at detection as an additional source of information on the
natural history of the disease; some readily available epidemiologic data obtained from the control
population in the absence of screening appear to be sufficient for estimation purposes. Another
advantage of this approach is that it offers a natural way for incorporating the stage of tumor
progression, where cancer detection normally occurs, into stochastic models of carcinogenesis.
The proposed model of tumor progression accommodates a wide range of deterministic and
stochastic laws of tumor growth.

As a measure of the effect of screening, we propose to use the difference between the expected
tumor sizes at detection with and without screening, which coincides with the Kantorovich dis-
tance [18-21] between the distributions of the corresponding random variables. The structure
of this distance allows for characterizing the net effect of screening, as compared to that of
spontaneous detection.

Further advancements of the proposed approach to constructing optimal schedules of cancer
screening will hopefully give answers to the following questions of major theoretical and practical
importance.

1. Is the optimal efficiency of screening high enough to warrant its implementation?

2. What is the relation between the optimal screening schedules and their efficiencies for the
criteria based on the tumor size and the expected time delay?

3. What are cancer specific patterns of optimal screening schedules?

4. What is the impact of hypothesized laws of tumor growth on the optimal screening effi-
ciency and the pattern of the optimal examination schedules?



Optimal Schedules of Cancer Surveillance 1421

5. What are quantitative characteristics of the initiation, promotion, and progression stages
for specific cancers?

The structure of the present paper is as follows. In Section 2, we describe some models of the
natural history of cancer (including cancer latency and growth), screening schedules, and cancer
detection. Here, we also formulate basic assumptions and introduce mathematical formalism. An
explicit formula for the efficiency functional is derived in Section 3. Sample numerical calculations
and analysis of their results are addressed in Section 4.

2. BASIC NOTIONS

2.1. Models of Carcinogenesis

In describing the natural history of cancer, the process of tumor development can be broken
down into three stages. These stages are:

o formation of initiated cells,

e promotion of initiated cells resulting in appearance of the first malignant clonogenic cell,
and

o subsequent growth and progression of malignant tumor.

The duration of each stage of carcinogenesis is thought of as a random variable (r.v.). In our
sample calculations presented in Section 4, we use a two-parameter gamma family to specify
the distribution of the length of the first two stages of carcinogenesis. However, more elaborate
mechanistic models of carcinogenesis are available to describe the time to the event of malignant
transformation. We provide two examples of such models.

The most widely accepted model of tumor latency is commonly referred to as the Moolgavkar-
Venzon-Knudson (MVK) Model [22,23]. This Markovian two-stage model involves four param-
eters that refer to the rates of initiation of target stem cells (that is, formation of primary
precancerous lesions), and rates of division, death or differentiation, and malignant transforma-
tion of initiated cells. It was first pointed out by Heidenreich [24] and subsequently by Hanin
and Yakovlev [25] and Heidenreich et al. [26] that these four parameters are not jointly identifi-
able from time-to-tumor data. In the case of constant parameters, all triples of their identifiable
combinations were described at length in [25]. In the latter case, the MVK model leads to the
following explicit formula for the distribution of the total duration T of the first two stages, that
is, of the time from the birth of an individual to the tumor onset [27,28],

- a+ blert 17

Here a,b, p > 0 are identifiable parameters of the model, Fr :=1— Fr is the swrvivor function
of the r.v. T, and Fr is the cumulative distribution function (c.d.f.) of the r.v. T'.

Another model of carcinogenesis was proposed by Yakovlev and Polig in [29]. According to
this model, the hazard function ¢ of the time T of tumor latency, which is related to the survivor
function by

FT(t) =e ’(; éls) ds’ t Z Ov (2)
is of the form s
‘ P(s) = O1e~02lo h(“)d“/ hu)f(s — u)du, 520, (3)
0

where h is a given time-dependent rate of external exposure, f is the probability density function
(p.d.f.) of the tumor promotion time, and 6,8, are positive constants. The key feature of the
Yakovlev-Polig model is that it allows for the process of cell death to compete with the process
of tumor promotion. Two particular cases of the model referring to spontaneous and induced
carcinogenesis were employed in [30] and [31] to study the distribution of tumor size under a
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threshold type mechanism of tumor detection. Recently, Hanin and Boucher [32] found conditions
under which the parameters f, 8;, 62 of the model given by (3) are identifiable from time-to-
tumor observations. Specifically, a general necessary condition for identifiability of model (3) is
given by the following theorem.

THEOREM 1. Suppose that the function h satisfies fooo h(t)dt < oo and that, for some T > 0,
h(t) =0 for t > T. If the model is identifiable in a family F, then

F(T)>0, forall FeF.

DEFINITION. A family F of absolutely continuous probability distributions on Ry is said to be
graduated if for every two distinct p.d.fs f, f € F and for every constant A > 0, there is a
number 7 > 0 (which may depend on f,f and A) such that either Af(t) > f(t) for allt > 7, or
Af(t) < f(t) forall t > 7.

The following result generalizes Theorem 1 in the case of graduated families.

THEOREM 2. Suppose that h is bounded, supported on [0,T} for some T > 0, and positive
almost everywhere on [0,T]. Then the model is identifiable in a graduated family F if and only
IfF(T)>0forall FeF.

2.2. Tumor Growth

The following general functional form is assumed for the tumor size (the number of cells in a
tumor) S:

S(w) = fo(w), (4)
where w is the time from the moment of the onset of cancer, and 8 is a parameter which may
be scalar or vector, deterministic or random. It is assumed that, for every 6, fp is a strictly
monotonously increasing absolutely continuous function such that fy(0) = 1. For a given 8,
denote by gg the inverse function for fy, and set

Oy(w) := /Ow fo(u) du.

Specific laws of tumor growth of primary interest are listed below.

(1) Deterministic exponential growth; in this case, S(w) = e, where A > 0 is a constant
growth rate; see [33] for substantiation.
(2) Exponential growth with A thought of as a gamma distributed r.v. [34].
(3) The Gompertz law
S(w) = eA(l“e_“w),

with constant parameters A, B > 0.

2.3. Screening Schedules

The sequence of moments of time assigned for medical exams for a specific cancer and counted
from the birth of a patient will be called a screening schedule. Let T be the set of all possible
screening schedules 7 = {7 < 7 < -+ < 7»,}. The set 7 may be subject to (some of) the
following restrictions:

(a) n < ng, where ng is an upper bound for the number of exams;

(b) 71 > m and 7, < M, where m and M are the earliest and the latest times for the first
and the last exams, respectively;

(¢) Tig1 — T 2 h>0foralli=1,2,...,n — 1 (this condition suggests a lower bound h for
the minimal duration between any two successive exams).

Other restrictions on the moments of exams can also be accommodated. In the language of
control theory, the set 7 is referred to as the set of admissible schedules.
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2.4. Tumor Detection

We distinguish between spontaneous and screening based tumor detections. The first occurs
in the absence of or concurrently with screening and is thought of as a continuous process. In
contrast to this, screening based detection is an instantaneous event that may occur only at the
moments of the prescribed medical exams and is therefore a discrete process. When both types
of detection are présent, they can be viewed as competing risks.

Numerous attempts have been made to relate the probability of detecting a tumor to its size [33—
37]. Following [37], we assume that the rate ro of spontaneous tumor detection is proportional
to the current tumor size

To = S, (5)

where o is a positive constant.

Let r.v.s Wy and W; denote the times of spontaneous and screening based detections, counted
from the moment of cancer onset, respectively. Then, for the moment W of combined detection,
when both detection mechanisms are in place, we have W = min(Wp, W;). Denote by

No=fo(Wo)  and N = fo(W) (6)

the corresponding tumor sizes at spontaneous and combined detection.
Keeping in mind relation (2) between the survivor function of an absolutely continuous non-
negative r.v. and its hazard rate, we derive from (5) that, in the case of nonrandom parameter 6,

3 ro(u) du

FW(] ('UJ) =e" Jo ~ao o fo(u)du __

- e~ 0®a(w) (7)

Therefore,
Fivy(n) = Fu (go(n)) = e™20%0 00,
and hence,
o0 _ o0 {o o]
ENg=1+ / Frny(n)dn =1+ / e~ @0Polgo(m)) gpy = 1 4 / e 0®o(W) flyydu.  (8)
1 1 0

If 0 is a r.v., then an additional integration in (8) with respect to the distribution of 6 is required.
In particular, for nonrandom exponential tumor growth with rate A, we have

FWO (w) — e—(ao/z\)(e'\""—l)’ w 2 0, . (9)
Fn,(n) = e~ (@0/Nn-1) n>1, (10)

and A
ENg=1+ —. (11)

(o7}

Equation (10) suggests that in this case the r.v. Ny has a translated exponential distribution with
parameter ag/A. If A is a r.v. which is gamma distributed with parameters y, v, then it follows
from (11) that
ENg =1+ —*l-i—
QgV
We now specify the distribution of the r.v. Wj. Recall that W is the time of screening based
detection (in the absence of spontaneous detection) counted from the moment of appearance
of the first malignant clonogenic cell. Indeed, the distribution of W; depends on the selected
screening schedule 7 = {r; < 73 < --- < 7,,}. For the sake of convenience, set 75 := 0 and
Tpe1 1= oo. It suffices to define, for every t > 0, the conditional distribution of W; given that
T=t.
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Let m <t <741, 0<i<n For0<i<n-1andi+ 1<k <n, define the probability
pi(k) == Pr(Wy = 7, =t | T = t) of tumor detection at the k" screen given the cancer onset at
moment ¢, and by ps(c0) = 1= Y p_.: i pi(k) the corresponding conditional probability that the
tumor is not ‘detected by screening.

We introduce a discrete analogue of the hazard rate for the screening based detection by

n

pe=Y ri(k)ds, -1, (12)

k=i41

where §, stands for the Dirac measure at z, and the sum over the empty set of indices is set, as
usual, to be zero. By definition, the discrete measure y; is related to the conditional survivor
function of Wy given that T = ¢ through the equation

F""1|T=t(w) =e" fow du,(u)’ w > 0, (13)

compare with (2). It follows from (12) and (13) that

n n
Z pu(5) + pr(o0) = Zl)t(j)+l7t(00) e~ (k)
j=k+1 j=k
~ or, equivalently, that
k k-1
1- Z pe() = |1- Z pe(d) | e ®, (14)
J=i+l j=it1

For k =i+ 1, we find from (14) that
1—py(i+1) = e ™0+, (15)
More generally, iterating this argument we obtain that
pe(k) =¢e” TiZhaim() [1 — e"”("')} , i+1<k<n.

Observe that this holds true for all k = 1,...,n, if we set py(k) = r(k) =0for 1 <k <.
Similar to (5), we are assuming that the discrete rate of screening based detection is propor-
tional to the current tumor size

ri(k) = aS (1 — t), i+1<k<n, (16)

with some constant o > 0. Combining (13), (12), and (16) with (4), we find that, given any ¢
such that 7 <t <741, 0<i<n —1,

Fw,r=t(w) = e i folr=t) where 7, —t <w <141 -8, i+1<j<n (17)

Consider the case of one exam occurring at a moment 7 with the detection probability p =
p(t, 7) and the discrete detection rate r = r(¢,7). Then by (15), 1 —p = e~". If the probability p
is small, then the rate r is approximately equal to p. In particular, under assumption {16),
the probability of tumor detection is approximately proportional to the current tumor size p ~
aS(T —t). Klein and Bartoszyiiski [34] proceeded in their study of breast cancer from a more
general assumption that the probability of tumor detection is proportional to some power of the
tumor size. Their estimate of this power leads, however, to a value which is very close to 1.
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3. FORMULA FOR THE SCREENING
EFFICIENCY FUNCTIONAL

We proceed from the following two biologically natural assumptions.

1. The r.v.s Wy and T are independent.
2. For every t > 0, the r.v.s Wy and W, are conditionally independent given that T' = ¢.

The first assumption claims that the moment of spontaneous tumor detection measured from
the appearance of the first malignant clonogenic cell is independent of the prior duration of
tumor latency. The second assumption reflects a technological (or instrumental) nature of both
detection processes. It states that, given the moment of cancer onset, the two times Wy and Wy,
at which competing events of the spontaneous and screening based tumor detection may occur,
are independent. This statement immediately follows from the assumption that both detection
processes are completely determined by the current tumor size as a deterministic function of
time.

For an admissible screening schedule 7 € 7, we define the efficiency functional as the Kan-
torovich distance dy (Ng, N; 7) (see [18,20,21]) between the tumor sizes N and N at spontaneous
and combined detection. This quantity serves as a clinically natural measure of the gain resulting
from screening. It is well known [19,20] that

d(N,N();T)=/100‘FN0(71)—FN(71)I dn. (18)

It follows from (7), inequality Wy > W, and monotonicity of the function fy that the r.v. No
stochastically dominates the r.v. N : Fy, > Fy. This leads to the following alternative expression
for the efficiency functional:

o0 o0
d(N,Ng;7) = / Fy,(n)dn — / Fyn(n)dn = ENy — EN, (19)
1 1

where E stands for the expectation.
Suppose that parameter 6 is nonrandom. We set n = fg(w) and condition upon the r.v. T’
in (18) to obtain

d(N,No;7) = /O°° IFWO(UJ) — FW(w)l F4(w) dw
= /000 /0°° IFWO (w) — FW|T=t('LU)| fa(w) dwdFr(t),

where FW]T:t is the conditional survivor function of the r.v. W given that T = ¢. Since W =
min(Wy, W1), it follows from our Assumptions 1 and 2 that

Fw, — Fwir=t = Fw, = Fwo Fw, 7=t = Fwo Fw, 7=t

Therefore, o oo
d(N, No;7) = /0 /0 Fupy =) By, () £y () dw dFp (2). (20)

Observe that if T = ¢, where 7; <t < 7341, 0 < ¢ < n, then the only possible values of the r.v. W
are Tyy1 —t,...,Tne1 — t. More specifically, W) = 7; —t,i+1 < j < n, if the §* exam detected
a tumor, and Wi = 7,41 — t = oo if the tumor was not detected in the course of screening.
Therefore, ift > 7, or 7; <t < Ty41, 0<i<n—1,and 0 < w < Ty41 — ¢, then Fyy, jp—¢(w) = 0.

This allows us to rewrite (20) in the form

n—1 Tit1
Vo) =Y [
i=0 vV T

n Ti+1—t

Z / FWlIT:t(w)FWo (w)fé(UJ) dwdFr(t).
j=i+1Y Tt
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We now recall the explicit expression (17) derived above for the function le]T=n and denote

Gy(x) ::/ Fyy (w) fa(w) dw, z >0,

to obtain finally

n—1 Tit1 n .
d(N, No;7) = Z/ Z [1 — e~ Zi=it1 fu(m—t)] [GB (Tj —t) -Gy (Tj+l - f)] dFp(t)
=0T j=itl
n—1 Tigr T i (21)
— Z/ Z e—aZk:M-l fo(mi~t) [1 _ e—-afn('r_:—t)} G(Tj _ t) dFT(f)
=0 VT jmitl

In the case when parameter 6 is random, the right-hand side of (21) should be integrated addi-
tionally with respect to the distribution of 6.
If, in particular, fo(w) = e’ with a constant rate ), then invoking (9) we find easily that

Go(z) = ie‘(QO/A)(EA'r*I), z>0.
Qo

In this case, the efficiency functional (21) takes on the form

d(N7N0;T)

n—1 T n . -
- Z/ TS eraTizh e [1- o] e~ ) gy (2D
Qg ;
...O '

T g=itl
Observe also that (19) implies
EN = ENy —d(N,Ng; 7).

This allows for an explicit calculation of the expected tumor size at combined detection on the
basis of formulas (8) and (21).
The problem
d (N, Ny; 7} — max, TeT, (23)

can be solved by exhaustive search with some simplification arising from the special form of
the dependence of the functional (21) on 7. A question of practical importance is what are the
values of the number n of exams for which the problem (23) is computationally feasible. We will
conclude this paper, which deals primarily with methodological and mathematical aspects of the
problem of optimization of cancer surveillance, with some sample calculations with prescribed
values of model parameters.

4. NUMERICAL EXPERIMENTS

It was assumed that the time 7" to tumor onset is gamma distributed with the mean p = 50
years and the standard deviation o = 20 years. The graph of the c.d.f. Fr is shown in Figure 1.
The law of tumor growth was taken to be deterministic exponential with the rate A = 1.6 years™!,
which corresponds to the tumor size doubling time of approximately 5.2 months. The rate of
spontaneous tumor detection was assumed to be ap = 0.03. This value has no relevance to any
actual data and serves only a purpose of illustration. The graph of the survivor function Fyy,
given by equation (9) is presented in Figure 2. The effect of one exam occurring after tumor
onset with the screening based tumor detection rate o = 0.1 is shown in Figure 3 featuring the
survivor function of the time W to combined tumor detection.
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Figure 1. The cumulative distribution function for the time to tumor onset.
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Figure 2. The survivor function for the time to spontaneous detection.
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Figure 3. The survivor function for the time to combined detection (a=0.1).
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Figure 4. Optimal screening efficiency as a function of the parameter o given a fixed
number (n = 10) of examinations and ¢ = 20 years.
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Figure 5. Optimal screening efficiency as a function of the standard deviation, o, of
the onset time (n = 10, a = 0.1).

Table 1. Optimal screening schedules.

n =20
o « Ar=m7 Ao Az Ay As Ag Ar Ag Ag Ajo
20 0.1 27.75 2.25 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.25
A1 Ay | A3 | A | Ais | A | Awr | As | Ars | Agg
2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25

n =10
o a | A=n | A | A3 | As | As | A | A7 | As | A¢ | A
20 0.1 35.00 2.50 2.50 2.50 2.25 2.50 2.50 2.50 2.50 2.50
20 0.3 35.00 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50
20 0.5 34.50 2.75 2.75 2.50 2.25 2.50 2.50 2.50 2.75 2.75
10 0.1 40.75 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.25
30 0.1 27.25 2.50 2.75 2.50 2.50 2.50 2.50 2.50 2.50 2.50
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Figure 6. Profiles of the efficiency functional (n = 20, o = 20 years, a = 0.1).

The search for optimal screening schedules and optimal screening efficiencies was conducted for
a fixed number n of screens with no restriction on the moments of exams and for various values
of . The method of optimization was the exhaustive search with the step 0.25 years. Parameter
values y = 50 years, A = 1.6 years™!, and ag = 0.03 were fixed throughout the calculations. For
n = 10, plots of the rescaled optimal screening efficiency d with o = 20 years versus o and, for
a = 0.1, versus o are shown in Figures 4 and 5, respectively. As it could be expected, d increases
with increasing o and decreases with increasing o.

The results of our search for optimal screening schedules with n = 10,20 and with several
values of ¢ and « are given in Table 1. For the reader’s convenience, screening schedules are
represented by the intervals A; := 73 — Ti—1, i=1,...,n, between two successive exams. For all
cases explored, optimal screening schedules are uniform or very close to such.

As a test for optimality of a screening schedule, profiles of the efficiency functional (22), with
n — 1 moments of exams fixed at the optimal values and the remaining one varying between the
two fixed neighboring moments of exams, were computed. For n =20 and o = 0.1, these profiles
are given in Figure 6. For the moment 71, a clear cut maximum was observed (see Figure 6d),
while for 7o¢ the maximum is more flat (see Figure 6c). All intermediate moments of exams
Ta,...,T19 demonstrated a well-pronounced parabolic maximum (see Figures 6a and 6b).

This study shows that mathematical and computational problems of optimal cancer surveillance
are tractable within the framework of the proposed model.
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Abstract

This paper is concerned with modern approaches to mechanistic modeling of the process of cancer
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1. Introduction

Dr Robert Bartoszyriski passed away on 17 January 1998. The biography of this exceptional
individual will be published in a special issue of Mathematical and Computer Modelling [1]
dedicated to his memory. In last months of his life he was developing new approaches to
stochastic modeling of quantal response variables in carcinogenesis and metastatic progression
of tumors. Unfortunately, this latest work remained unfinished. The originality and depth of
his thought lead us to expect that new notable results would have emerged from his research
endeavor. In this paper, Robert’s friends and colleagues make an attempt to develop some of
his most basic ideas. In doing so, we discuss a variety of issues and problems that arise in the
quantitative description of the process of cancer detection, not only those of special interest to
Robert in his last work. We are convinced that Robert would have done this differently and
most probably in a much more elegant way. However, this is the best these authors could do
to pay a tribute to one of the brightest scientists in the field of biomathematics and biosta-
tistics.

Bartoszyniski and co-workers [2-6] have developed a new avenue in stochastic modeling of
cancer detection. The basic idea behind their approach is to relate the chance of detecting a tumor
to its current size. This idea was also explored by Kimmel and Flehinger [7] in the context of the
primary tumor size — metastasis relationship in solid cancers and by Hanin et al. [8] in an attempt
to develop new approaches to optimal scheduling of cancer surveillance.

In the present communication, we address a wide spectrum of problems associated with sto-
chastic modeling of cancer detection. In Sections 2 and 3, we give an introduction to the modeling
techniques based on quantal response models. Marginal distributions of tumor size and age at
detection as well as associated estimation problems are discussed in Sections 4 and 5; the joint
distribution of the two random variables and their randomized counterpart is given in Section 8.
Generally speaking, explicit formulas for the marginal distributions of tumor size and age of an
individual at detection are not sufficient to utilize completely the information contained in the
corresponding sample observations for estimation of parameters describing the natural history of
the disease; one needs to know their joint distribution in order to develop pertinent methods for
the maximum likelihood statistical inference.

In Sections 6 and 7, we explore some identifiability and stability properties of the proposed
model of tumor detection. For the sake of completeness, an alternative model of a threshold type
process of tumor detection is considered in Section 9. Section 10 explores similar ideas in rele-
vance to metastatic processes which were also one of the major subjects for Dr. Bartoszyniski’s
research in the latest period of his life.

We believe that the basic idea behind the modeling techniques presented in this paper deserves
further exploration.

2. Quantal response variables
Let Y(¢), t >0, be a stochastic process, and T be an absolutely continuous non-negative

random variable (r.v.) defined on the same probability space and interpreted as time of occurrence
of a certain event.
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Definition 1. A random variable T is said to be quantal with respect to the stochastic process Y (z)
if there exists a non-negative risk function #(y), y > 0, such that for all > 0, Ar > 0, and all
admissible y,

Pr{T € [t,t + At)|T > t and Y(¢) = y} = r(y)At + o(At),

where o(x) is a function such that o(x)/x — 0 as x — 0+.

The concept of quantal response variable was introduced and studied by Puri and Centuria [9]; its
further analysis is due to Puri [10,11]. In fact, the definition in [9] postulated existence of a more
general risk function r(y, t); however, the present work is concerned with age-independent case where
the conditional hazard function of the r.v. T depends on time only through the current value of the
stochastic process Y (¢). Specifically, it is the important particular case r(y) = ay with constant o > 0
that is the main subject matter of this paper.

The above concept appeared in [9] as an alternative to threshold models of biological effects. The
latter modeling techniques are based on the assumption that a response of the organism to a given
(pathological) process occurs as soon as the process exceeds some threshold level, which may be
random or deterministic (see Section 9 for further discussion). Puri [10] (see also [9]) referred to a
personal communication with LeCam, who apparently was the first to suggest a quantal response
model in the context of host’s response to microbial infection.

Whether a quantal mechanism, or a threshold mechanism is a more adequate description of the
process of tumor detection is a question that may be impossible to answer in the present state of
biological knowledge. The diversity and complexity of detection mechanisms remain to be clearly
understood. In such situations, it is perhaps best to take a pragmatic approach, and choose that
option which leads to more mathematically tractable formulations of biologically meaningful
problems. The main difference between threshold and quantal mechanisms is that in the first case the
event of interest always occurs at the so-called ladder point of the process Y(¢), that is, at a value
higher than any previously attained. In contrast, a quantal event may occur at any value of the
process Y (¢); it is only assumed that the likelihood of the event of interest depends on the process Y ().
This means that the quantal response model is indeterministic in nature; its stochastic character
remains even if the process Y (¢) is deterministic.

A more general quantal response model arises when the hazard function of the time 7'to the event
of interest depends on the past sample path of the process Y (¢) or on functionals of the sample path.
Handling quantal responses in this case involves conditioning on a sample path of the process Y (¢),
deriving the desired formulas, and then ‘unconditioning’ the resultant expressions. The main diffi-
culty lies, naturally, in the last step. In the opposite extreme case where Y (¢) is a deterministic strictly
increasing function of time, various characteristics of r.v. T can be obtained through its hazard
function hr(t) = r(¥ (7).

3. Tumor detection as a quantal response event

When modeling time of tumor detection as a quantal response variable in accordance with
Definition 1, the first problem is to determine the form of the risk function r(y). The most natural
approach is to relate the chance of detecting a tumor to its current size [2-8]. Although the rule
‘the larger the tumor, the more likely it will become detected’ appears unquestionably valid, the
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real question is to what characteristic of tumor size is the ‘risk’ of detection proportional. For
tumors easily accessible to palpation (e.g. skin cancer), the answer is obvious: it is the volume of a
tumor that plays the role of Y(¢). The same seems to be true for breast cancer, although the
reasons for this are much less clear. Indeed, the major technique of detecting breast tumors is
mammography, where the tumor is observed as a projection on the plane. A priori, therefore, one
could postulate that the process Y(¢) in breast cancer detection should be the surface of the
projection, that is a quantity of the order of [V (r)]*/®, where V( ) is the volume of the tumor at
time ¢. Klein and Bartoszysiski [6] tested the relationship Y(r) = [V (¢)], and estimated €, with
e = 1 providing the best fit to breast cancer data. For other tumor sites, detection may be related
to appearance and intensity of some symptoms which may depend on cumulative effects of the
presence of a tumor, so that Y (¢ fo (t — 1)k(t) dr for some suitable functions or measures .
Another example of this kind is prov1ded by molecular markers of tumor growth that have proven
to be quite useful in clinical practice.

Suppose the growth of a tumor begins at time ¢ = 0. Let X(¢) be the number of tumor cells at
time ¢ > 0 and X(0) = ny. In the simplest case where Y (¢) = oX(¢), « > 0, the following line of
reasoning illustrates distinct advantages provided by the assumption that tumor detection is a
quantal response event. Suppose that the initial number of tumor cells ny is non-random and the
growth of a tumor obeys the postulates of the homogeneous pure birth process, also known as the
Yule process [12], with a constant birth rate 1. Then for every fixed ¢ the random variable X (¢)
follows a negative binomial distribution, that is

Pr{X(t) =n} = ( n-1 >e‘2’"°(l — e n >y,

n—ny

Pr{X(t)=n} =0, n<ny.

It follows that the expectation and variance of tumor size at time ¢ are equal to

E{X(t)} = X(0)e" and Var{X(s)} =X (0)e"(e" — 1), (1)
respectively.
Let
Z(t) == X(t)e ™.

Then, for ¢t,7 > 0 we have
E{Z(t+1)|Z(1)} = E{X(t + 1)e"*|Z(1)}
= e MIE(X(t+ 1) X (1)}
= e M x (f)e”
=Z(t).

This argument shows that Z(¢) is a martingale. Consequently, X (¢)e™ converges almost surely to

a random variable, say &, as t — oo [13]. Under mild conditions, a similar asymptotic result holds
for a more general model of the Bellman-Harris branching stochastic process [14]. It follows from
formulas (1) that E{¢} = Var{¢} = ny. According to the widely accepted clonogenic concept of
tumor development, the process of tumor growth begins with a single malignant cell, i.e. 7y = 1, in
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which case E{¢} = Var{¢} = 1, and the random variable ¢ has the unit exponential distribution
[15]. Therefore, the contribution of initial stochastic fluctuations to the process X(¢) is expected to
be relatively small if the time elapsed from the tumor onset is sufficiently large.

From the practical point of view, it would make sense to disregard the fluctuations, and treat
X (¢) as a continuous increasing deterministic function of time. Consequently, the volume of a
tumor at time ¢ after the event that initiates the tumor growth (generates the first malignant cell)
will be described as ce'/?, where y = 1/1 and ¢ = x(0) is the volume of a single tumor cell
(c =~ 107° cm?, see [6]).

There are at least two ways of generalizing this simple model. First, one may treat the pa-
rameter y (or 1) as a random variable, thereby yielding various randomized counterparts of the
basic model of exponential growth. The second possibility is to go beyond the pure birth process
and proceed from more complex laws of tumor growth, like the Gompertz or logistic functions, to
generate a richer family of models. In doing so, it is a good idea to construct an hierarchical
(nested) family of models so that a particular (minimal) sub-family could be selected to provide a
sufficiently accurate description of real data. Whether or not the above possibilities are feasible
depends heavily on the type of data to be analyzed.

4, Tumor size at detection and its distribution

In this paper we confine ourselves to the process of spontaneous (without screening) tumor
detection. This term refers to self-detection and incidental diagnoses resulting from individual
medical exams that do not follow any fixed surveillance schedule. However, it is possible to extend
the model of cancer detection to include discrete surveillance (screening) strategies or a combi-
nation of spontaneous and screening-based detection mechanisms [8]. It should be kept in mind
that in most cases the event of spontaneous tumor detection is a process that takes a certain
amount of time rather than an instantaneous event. This process normally consists of various
medical exams that may or may not be triggered symptomatically. In what follows, spontaneous
detection is thought of as occurring in the course of the exam that confirms inequivocally the
tentative diagnosis, and the time of this exam is termed the time of spontaneous tumor detection.

Suppose that the number of tumor cells, X (¢), present in the tumor at time ¢ (measured from the
time of tumor onset, i.e. the event of malignant transformation of a premalignant initiated cell) is
described by a deterministic growth function of time, that is,

X(t) = fo(0), (2)

where 0 is a parameter which may be scalar or vector, deterministic or random. For simplicity, we
assume that the parameter 6 is non-random. It is also assumed that, for every 6, fp(¢) is an ab-
solutely continuous strictly monotonically increasing function such that f;(0) = 1. For a given 6,
denote by ¥,(¢) the inverse function for fy(¢), and set

)= [ Al

The next step is to assume that the rate r of spontaneous tumor detection is proportional to the
current tumor size
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r(f) = oX (1) = af (1), (3)

where o is a positive constant, compared with Definition 1. Let W be the time of spontaneous
tumor detection measured from the time of tumor onset, and let S be the tumor size at detection.
Then r is the hazard function of r.v. W. Therefore, the survival function, Gy (w) = Pr{W > w}, for
the random variable W is given by

Gy (w) = exp{ - /0 ") du} _ exp{ —u /0 ' fo(u)du} _ ) )

In like manner, we derive the tumor size tail function, Fs(s) = Pr{S > s}, of the random variable
S = foW)

Fy(s) = Gwly(s)] = e7*70 W), (5)

In the derivation of formula (5), it is assumed that f(¢) — oo as t — oo. If f(¢) has a finite limit,
say d, then formula (5) is true for 0<s < d and Fs(s) =0 for s > d.
The expected tumor size at detection is equal to

E{S} =1+ /100 Fs(s)ds=1+ /000 e~ £ (1) du. (6)

In the special case of deterministic exponential growth with rate 4, it follows from formula (5) that
the random variable S has a translated exponential distribution, that is

Fs(s):exp{—%(s—l)}, s> 1 (7)

and therefore,
A

Consider a new random variable V representing tumor volume at detection. To find the distri-
bution of ¥ we specify the law of tumor growth in volume units by the function v(¢) = ce*, where
¢ is the volume of a single cell. Then it follows from (7) that

Pr{V>v}:Fy(v)=exp{—{z(v—c)}, v=c. (8)
It is important to note that the distribution of tumor size (volume) at detection does not depend
on the time of tumor onset.

The simplest way to generalize the above model is through allowing for random parameter 0.
The random nature of the parameter 6 can be interpreted as inter-individual variability of the law
of tumor growth. Let A(0), 6 > 0, be the prior distribution density of this parameter. From
formula (5) we immediately obtain

FS(S):/O g * 20D p(0) db. (9)

It is interesting to mention that the law of tumor growth can be recovered from the distribution of
tumor size at detection. To see this, denote by ps(s) to be the probability density function (p.d.f.)
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of tumor size at detection. Differentiating formula (9) with respect to s, solving for the derivative
of ,, and then integrating the resultant expression, we have

1 [ ps(u) du
== AN Ay 10
) =5 | B (10)
If one is interested in tumor volume rather than the number of tumor cells at detection, then
formula (10) assumes the form

=S [T 8

where py (v) = ¢! ps(v/c) is the p.d.f. of the tumor volume at detection and F(v) = Fs(v/c) is the
corresponding tail function.

If the growth of tumor volume is exponential with parameter A and y = 1/4 follows a gamma
distribution with shape parameter a and scale parameter b then by compounding (8) we find that

the p.d.f. py of the tumor volume at detection follows a translated version of the generalized
Pareto distribution

—(a+1)
ap B
- — 1
o) =L 1 Lm0 (1)
where = a(a+ 1)/(bc).
Suppose we have a sample vy,. .., v, of tumor volumes at diagnosis. The maximum likelihood

estimates of @ and b can be obtained by maximizing the log-likelihood
l=nloga+nlogﬁ—(a+1)zlog[1+ﬁ(v]~~—c)] (12)
=1

expressed in terms of parameters a and f8 := f/(a + 1) = a/(bc). The equations for computing the
maximum likelihood estimates are as follows:

1 & 1
{;Zl—l—ﬁ(vj—c)

=

-1

1 ol +ﬁ(vj*c)]] =1, a= [12 log(1 + )

Observe that these equations always have a solution =0, a = co which corresponds, as it
follows from (11), to the translated exponential distribution. Examples show that other solutions
may not exist or be multiple, see [16,17] for a more detailed discussion. In the case of multiple
roots, the usual regularity conditions are no longer sufficient to guarantee consistency of the
maximum likelihood estimator, even when it exists for all n [18]. A cure for this difficulty is to
construct a y/n-consistent estimator and then apply the first step of the Newton—Raphson iterative
procedure. It can be shown that, under the commonly invoked regularity conditions, the resulting
estimator sequence is consistent, asymptotically normal, and efficient [18]. The simplest way to
find a /n-consistent estimator is by constructing the moment estimator (based on the first two
moments) or applying the accumulation method [19] associated with a certain prescribed partition
of the data range. It should be kept in mind, however, that the method of moments for the
distribution (11) is feasible only for a > 2. Direct maximization of the log-likelihood function (12)
represents an alternative way of finding the maximum likelihood estimators of the parameters
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incorporated into the generalized Pareto distribution [20]. Since ¢ is at least six orders of mag-
nitude less than the smallest of the vs, one may disregard it in formula (12), if desired. A detailed
study of maximum likelihood estimation for the distribution (11) in comparison to the method of
moments is given in [21].

The way of estimation of the parameters a and b described above implies that the coefficient « is
known. Alternatively, one can apply the same randomization procedure not to the parameter
y = 1/4 but to the product ay, thinking of the latter as a gamma-distributed random variable with
shape parameter a; and scale parameter b,. The resultant distribution has the following density:

a =(a1+1)
)= 1+ L 0-0] (13
where B, = (a+ 1)/(bic).

To see whether the above randomized version of the distribution (8) really makes a difference
when applied to epidemiological data, we analyzed measurements of tumor size at detection in
1120 patients with lung cancer (all clinical stages) identified through the Utah Cancer Registry.
These measurements are provided by pathological records. The method of maximum likelihood
with direct maximization of the log-likelihood was used to estimate the numerical parameters
incorporated into models (8) and (13).

The two parametric estimates of the p.d.f. of log V" are compared with the corresponding his-
togram in Fig. 1. The results of this analysis clearly indicate that the exponential distribution (8) is
entirely inconsistent with the data under study. On the other hand, its randomized counterpart
(13) provides a good fit to the data.

Another way of modifying the basic model is through a different choice of tumor growth ki-
netics. In particular, the Gompertz law of tumor growth is specified by the formula

St = 07

with constant parameters J,,, > 0. The corresponding p.d.f. of tumor size at detection is given
by

o t[]ogél——log(&l‘logs)] (120
T ——————— pa— e 1{l—e d
PO = 5T P ), “

% e _mzfi_gg_
=500, —logs) P75, ), 8 —logx

We evaluated the effect of tumor growth kinetics on the shape of the p.d.f. of tumor size by sample
computations. The p.d.f. ps for the Gompertz growth depends on two parameters o/, and d;. We
selected the following numerical values of these parameters: «/8; = 1.4 x 107 and 6, = 25. To
see how well can the p.d.f. ps be approximated by the exponential density (derived from formula
(7)) of the form

. o o
P =7ew{-Z6-D}, s>1,

we used the transformation Z = log S and then minimized the Hellinger distance [22] between the
two densities with respect to the parameter «/A. The distance attained its minimum for

} for 1 <s < e,
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Fig. 1. The probability density function for log ¥ estimated from data on the volume ¥ of lung cancer at diagnosis.
Dashed line represents the parametric estimate based on formula (8), solid line represents the estimate based on the

more general model (13), step-wise curve is the histogram constructed from the sample values of log ¥, where V is
measured in mm®.

a/A="71.67 x 101!, which value was used when computing the p.d.f. of Z in the case of expo-

nential growth. Fig. 2 shows quite dissimilar shapes of the distribution of tumor size at detection
for the two different kinetic curves of tumor growth.
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Fig. 2. The p.d.f. of logS for two different types of tumor growth. Solid line: exponential growth, dashed line:
Gompertzian growth.
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5. Age at detection and its distribution

Given the tumor growth begins at time ¢ = 0, the survival function for the time to detection is
specified by formula (4). In particular, for non-random exponential tumor growth with rate 4, we
have

Gy(w) =10 w0 (14)

A randomized counterpart of Gy(w) may be written as
G (w) = / e Vh)dy, w0, (15)
0

where A represents the p.d.f. of the parameter y = 1/4. We used a gamma distribution for y in our
analysis of the data on lung cancer based on the distribution of tumor size at detection (Section 4).
This analysis resulted in an estimate of the shape parameter of the function / that was very close
to 1, thereby suggesting an exponential distribution, A(y) = bexp(—by), y > 0, to be used in the
compounding procedure. Setting the coefficient a equal to 2.3 x 107! we obtained the estimate
b = 6.9. The resultant distribution density py is plotted in Fig. 3. Shown in this figure are two
other densities py computed for two different values of . It is clear that even a two orders of
magnitude difference in the value of o (given the same value of b) does not significantly change the
shape of the function py .

In describing the natural history of cancer, the process of tumor development can be broken

down into three stages. These stages are:

e formation of initiated cells;

e promotion of initiated cells resulting in appearance of the first malignant clonogenic cell;
e subsequent growth and progression of malignant tumor.

The duration of each stage of carcinogenesis is thought of as a random variable.

The above classification suggests that the event of malignant transformation occurs at some
random time T representing the total duration of the first two stages (initiation and promotion) of
carcinogenesis. In the case of sporadic carcinogenesis the r.v. T is measured from the date of birth
of an individual. Let G be the survival function of the r.v. T, and let g; stand for its density.
There are mechanistically motivated models of carcinogenesis that yield an explicit expression of
the survival function Gr(¢) or the corresponding hazard function.

The most widely accepted two-stage model of carcinogenesis is commonly referred to as the
Moolgavkar-Venzon-Knudson (MVK) model [23-25]. The standard form of this Markovian
two-stage model involves four parameters (6y, Ao, iy, 7o) that refer to the rates of initiation of
target stem cells (that is, formation of primary precancerous lesions), and rates of division, death
(or differentiation), and malignant transformation of initiated and promoted cells. It was first
pointed out by Heidenreich [26] and subsequently by Hanin and Yakovlev [27] and Heidenreich et
al. [28] that these four parameters are not jointly identifiable from time-to-tumor data. In the case
of constant parameters, all triples of their identifiable combinations have been described in [27]. In
the latter case, the MVK model leads to the following explicit formula for the distribution of the
total duration T of the first two stages, that is, of the time from the birth of an individual to the
tumor onset [24,29-31]
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Fig. 3. The probability density functions py for the time at detection (progression stage duration) distribution at values
of model parameters estimated from data on the volume of lung cancer at diagnosis and different values of the pa-
rameter «. Solid line: o = 2.3 x 10~%, dashed line: « = 2.3 x 10~1°, dotted line: = 2.3 x 10712,

(16)

Here 4, B, 6 > 0 are the identifiable parameters of the model. In formula (16) we use the fol-
lowing identifiable parameterization:

Gmy:HU>0:[M+mw]it>Q

B + Ae+BY

6= 00/da, A =1/lo+ by + o)’ — Sty + (o + 1l — o),
B= \/(}LO + o+ 110)” — 4hopty — (tto + g — o).

Properties of the hazard function of the r.v. T distributed in accordance with the survival function
(16) are described in [28].

Fig. 4 shows a typical p.d.f. gr that corresponds to the survival function (16). In these com-
putations, we used the values of 4, B, and 6 for lung cancer which were estimated by Luebeck et al.
[31] from the control group identified through the Colorado Uranium Miners Cohort. Specifi-
cally, we set 4 = 107 B = 0.1821,5 = 0.0364 in these computations. Numerical algorithms are
available for computing G in the case of piece-wise constant rates 6y, Ao, ty, 7o [24,32,33].

Another model of carcinogenesis was proposed by Yakovlev and Polig [34]. The key feature of
the Yakovlev-Polig (Y-P) model is that it allows for the process of cell death to compete with the
process of tumor promotion. According to this model, the hazard function ¢ of the time 7 of
tumor latency, which is related to the survival function by




124 R. Bartoszyrski et al. | Mathematical Biosciences 171 (2001) 113-142

0.006 -

0.004

0.002 -

0 T T T 1
0 40 80 120 160
Time (years)
Fig. 4. The probability density function g, for the time-to-onset distribution based on the MVK model of sporadic

carcinogenesis. Computations were carried out at the following estimates of model parameters obtained from the
Colorado Uranium Miners Cohort [32]: 4 = 1074, B = 0.1821,6 = 0.0364.

Galt) = exp{ - /0'¢(u)du}, >0 (17)
is of the form
$(u) = 0, exp{ — 6, /0 l(x)dx} /0 I)p(u —x)dx, u 30, (18)

where [ is a given time-dependent rate of external exposure, p is the marginal (with respect to the
joint distribution of the promotion time and the time to cell death for initiated cells) p.d.f. of the
tumor promotion time, and 6; > 0, 6, > 0 are constants. The usual practice is to use a flexible
parametric family of distributions for the function p, for example the two-parameter gamma
distribution.

The hazard function ¢ has a maximum whenever 6, > 0 and either of the functions / and p is
bounded. In the case where f;° I(x)dx is finite, this assertion was proven in [34]. If [{* I(x)dx is
infinite and p is bounded (almost everywhere) from above by a constant C, we have

o(t) < CH </Otl(x)dx> exp{ -6, /Otl(x)dx};

hence ¢(¢) — 0 as t — oo. It is easy to see that ¢ displays the same behavior if the function / is
bounded from above. Since ¢(0) = 0 and ¢(¢) > 0 for ¢ > 0, the function ¢ must have a maxi-
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mum. However, the situation is not the same if we set 6, equal to zero. Suppose in addition that
I(x) =1 for almost all x >0, which is a reasonable assumption when modeling spontaneous
carcinogenesis. Then, it follows from (18) that

aﬁ=&ﬂ}wma

that is, ¢ is a non-decreasing function of time.

Recently, Hanin and Boucher [35] found conditions under which the model given by (17) and
(18) is identifiable from time-to-tumor observations. The model has been applied to various sets of
experimental and epidemiological data to gain quantitative insight into the process of tumori-
genesis induced by radiation [36-42] and chemical carcinogens [43-47]. The model also explains
some peculiarities in the incidence of female colorectal cancer [48].

Both models can be represented [27] by the following general formula for the survival function
. GTI

Grlt) = exp{ — 6 /0 K@) du}, (19)

where 0, is the rate of initiation, and K is the promotion time cumulative distribution function.
More specifically, K(u) defines the probability that a cell initiated at time 0 completes the pro-
motion stage at or before time u. The distribution K is improper if a given two-stage model allows
for cell death in the course of tumor promotion. Formula (19) extends to the case of time-
dependent initiation rate 6(¢) as follows [38]:

Ga(f) = exp { - /0 0t — WK (w) du}. (20)

Mechanistic modeling of the process of tumor detection suggests a natural way of incorporating
the progression stage into the existing mechanistic two-stage models of carcinogenesis. When
considering some common human malignant tumors, it seems plausible to assume that the event
of malignant transformation is rare and the process of tumor detection is triggered by the first
arrival of a malignant cell. In other words, once the first malignant cell is generated, its subsequent
development (progression) into an overt tumor is irreversible and the detection process begins, but
those cell clones that may be generated at later times do not contribute to the process. In this case,
the time of tumor latency (age at tumor detection) can be represented as U = T + W. Assuming
stochastic independence between T and W we obtain the p.d.f. gy of U as the convolution

@mz[&uwmmmn 1)

Shown in Fig. 5 is a plot of the density gy computed in accordance with formula (21) at the
parameter values used earlier for computing the densities py and gr (Figs. 3 and 4). In is natural
that variations in the parameter o are even less tangible than those seen in Fig. 3.

However, the model represented by convolution (21) does not work well in settings where
multiple tumors are observed. In such settings (for one example, see [47]), the development of
nonlethal tumors is irreversible and the total number of tumors generated over any time interval
(0, 1] is recorded. All practically used two-stage stochastic models of carcinogenesis are essentially
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Fig. 5. The convolution of the p.d.f.s gr (see Fig. 2) and py (Fig. 3) for lung cancer as a function of the parameter «.
Solid line: o = 2.3 x 10~%, dashed line: & = 2.3 x 10~1°, dotted line: « = 2.3 x 1012,

based on the simplifying assumption that the process of initiation can be modeled as a Poisson
process with intensity 6(¢). If initiated cells are promoted independently of one another, the
number of cells initiated and subsequently promoted by time ¢ is a Poisson process with intensity

Alf) = /0 00t — WK () du,

see [27,34]. Introduce the convolution representing the cumulative distribution function of the
total duration of promotion and progression stages:

IK % Gy () = / K(u — w)dGy(w),
0
where Gy is the cumulative distribution function of the progression stage duration. Here we
assume again that the promotion and progression stages are independent. It follows from the

assumption on the Poisson process of initiation events that the survival function of the time to the
first tumor is given by

&) = exp{ - /OtO(t _ WK GW](u)du},

see [27].
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The latter formula has in fact much broader implications since it describes the situation where
multiple events of tumor detection can be interpreted as independent ‘competing risks’. Then it
follows that the time to the first event of detection is given by a minimum of a random (Poisson
distributed) number of independent and identically distributed random variables representing in-
dividual detection times of multiple tumors (or cell clones). Therefore, it makes sense to explore this
model as an alternative to model (21) in a wider spectrum of applications, including lethal tumors.

6. Identifiability of the distribution of the time to detection

Let us consider now the following problem. Suppose that the distribution of the time to onset T’
either belongs to the gamma family or is specified according to the MVK model by formula (16).
In both cases, parameters of the distribution of the r.v. T are identifiable from its observed dis-
tribution [27,35]. The same is true for the Y-P model under some mild conditions formulated in
[35].

It immediately follows from formula (4) that the p.d.f. of the time to detection, py, is given by

pww) = af (w) exp{ - oc/owf(s) ds}, w=0. (22)

Assuming that tumor grows exponentially with a fixed rate 1, one can find on the basis of formula
(22) that the parameters « and A are identifiable within this model given the times of spontaneous
tumor detection. A natural question is whether the entire set of parameters involved in the dis-
tribution of the age at spontaneous detection is identifiable. We limit our consideration to the
model (21) representing the time of tumor latency U as the sum of the two independent random
variables T and W. This leads to the following problem.

Problem. Let 2 and ¢ be two families of probability distributions on [0, 00). Is it true that the
family of convolutions P * G, where P € 2 and G € ¥, is identifiable? In other words, does

P]*G1:P2*G2,

where P, P, € 2 and G|, G, € 4, imply that P, = P, and G| = G,?

Taking both families to be the set of degenerate distributions d,,a > 0, and observing that
8, % 05 = 8,45, We conclude that in general the answer to this question is negative. Yet another
counterexample is given by gamma distributions I'(a;, b) and I'(a,, b) with the convolution being
equal to I'(a; + a»,b). To formulate a theorem providing sufficient conditions for the positive
solution of the problem we need the following definition, see [35].

Definition 2. A family of absolutely continuous distributions on [0, 00) is called graduated if for
every two distinct p.d.f.’s ¢; and ¢, from this family and for every & > 0 there exists a number
M > 0 such that either q;(x) < eg,(x) for all x > M or ¢»(x) <eqi(x) for all x > M.

In other words, a family is graduated if the limit at infinity of the ratio of any two distinct
p.d.f’s from the family is either 0 or infinity. It is easy to see that the gamma family is graduated.
The same is true for the family
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gua(x) = 0e®e ¥ N x>0, o, A>0, (23)
of p.d.f.’s of the form (22) with f(w) = e corresponding to the survival functions (14).

Remark 1. Observe that family (16) is not graduated, because any p.d.f. from this family with
parameters 4, B, é behaves at infinity like C exp{—bd¢}, where C is a positive constant depending
on 4, B and §, so that the ratio of p.d.f.’s for two distinct distributions with parameters 4;, B,, J,
and 45, B,, 6, satisfying B;d; = B,J, tends at infinity to a constant different from 0 and infinity.
The same is true for any family of distributions that can be represented in the form of formula (19)
if the distribution K has finite first moment.

Theorem 1. Let 2 and 4 be two families of absolutely continuous probability distributions on [0, 00)
with p.df’s p € P and g € 4. Suppose that

1. family 2 is graduated,

2. for every p € P, there is M = M(p) > 0 such that p(t) > 0 for all t > M;

3. for every p € 2 and for each s > 0, there exists a finite limit

. p(t—s)
h,(s) := lim ;
P( ) o0 p(t)
4. for each g € 9,

: " p(t—3s) Y .
tll»rglo o0 g(s)ds-—/o hy(s)g(s)ds;

S.forallpc Pandge 9,
0< / hy(s)g(s)ds < oo.
0

Then the family of convolutions P x G, where P € 2 and G € 4, is identifiable.

Proof. Suppose that for some distributions P,,P, € 2 and G,,G, € 4 we have P, « G|, = P, * G,.
Then

/Otpl(t—S)gx(S)ds = /Otpz(t—s)gz(s)ds, t>0.

Assuming that ¢t > M := max{M(p;),M(p,)} we rewrite this equation in the form
1 t
n(t=s) / n(t—s)
t ———gi(s)ds = p,(¢ s)ds, t>M.
p [ 2 awds=plo [ 2D

Passage to limit as + — oo in this equation with conditions (3)—(5) of the theorem taken into
account yields

llm pl( ) -l;) PZ dS
=00 PZ( ) fo 171 dS

Invoking conditions (1) and (5) we conclude that p; = p,. Denote this function by p.
For any p.d.f. ¢ of a non-negative random variable, let ¢ be its Laplace transform defined by
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o(z) :=/ e “o(t)dt, Rez>=0.
0

Then
P(2)8(2) = p(2)8,(2), Rez>0. (24)

Since p is a non-zero analytic function in {Re z > 0}, the set Q := {¢ € (0, 00): p(¢) # 0} is open
and non-empty. From (24) we conclude that ¢, = g, on Q and hence, by the uniqueness theorem
for analytic functions, g,(z) = §,(z) for all z with Re z > 0. Therefore, by the uniqueness theorem
for the Laplace transform, g, = g,. Thus, P, = P, and G; = G,. Theorem 1 is proved.

Remark 2. For concrete families 2 and ¢, condition (4) usually follows from standard theorems
about passage to limit in the Lebesgue integral. In particular, Theorem 1 can be applied in the case
when 2 is the family of gamma distributions I'(a, b) with shape parameter @ > 1 and % is the
family (23). First, conditions (1) and (2) of Theorem 1 are obviously satisfied. Next, for p € I'(a, b)
with @ > 1 we have for all s > 0

plt—s) (t—s
p(1) = ( t

Hence, condition (3) is met with A,(s) = exp{bs}. Further, assuming that a > 1 we obtain, for any
p.d.f. g from the family (23),

[ 20— [Ty 0s0)0s - [ eelsras <o

by the Lebesgue theorem on dominated convergence, which is condition (4). Finally, condition (5)
also holds. This leads us to a conclusion that if promotion time 7" has a gamma distribution
I'(a,b) with a = 1 and tumor growth is exponential with rate 4, then parameters a, b,o and 4 are
jointly identifiable from the observed distribution of the age at spontaneous detection.

a—1
) e e as t— 0.

Remark 3. It is easy to check that the convolution of the density corresponding to the MVK
model given by (16) and the p.d.f. specified by (23) does not satisfy the sufficient conditions
formulated in Theorem 1. The same is true for this convolution if the MVK model is replaced with
the Y-P model. This does not mean, however, that these convolutions are non-identifiable, but
more powerful analytical results are necessary to clarify their properties associated with the notion
of identifiability.

7. Model stability

Suppose the law of tumor growth is described by an increasing function f. A natural question
to ask is how sensitive is the distribution of the r.v. W given by (4) to the change of the law of
tumor growth. Solving this problem presupposes the choice of two metrics that measure distances
between the distributions of W and functions f, and establishing a relation between these metrics.

For two survival functions F, F5 of non-negative random variables, denote
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Poo(F1, F5) == sup{|Fi(t) — F(t)| : ¢ > O} (25)

Obviously, this formula defines a probability metric. Next, let # be the set of all non-negative
increasing functions on [0, 00). Given o > 0, define, for any functions f,, f; € #,

4.(f,f2) = inf max { [ 180 - Aone

exp(—a/orfl(t)dt>, exp(—oc/orfz(t)dt)}. (26)

It is readily checked that d, is a metric on &. Also, it is easy to verify that for all £}, f, € &, f; #
/>, there exists a unique number Ty = Tp(fi, f2) such that

d,(fi f2) = / "A®) - A0)dr

:max{exp(—a OTOf,(t)dt), exp(—oc OTofz(t)dt>}.

Theorem 2. Let f\, f» € F be two laws of tumor growth, and let F\, F; be the corresponding survival
Sfunctions defined in (4). Then

pw(Fi’E) gda(‘flaﬁ)'

Proof. Fix T > 0. Denote

d(fio fi T) = max{oc/or|f1(t)—f2(t)|dt, exp(—-a/orﬁ(t)dt>, exp(—a‘/orfz(t)dt)},

so that in view of (26)

dlfi, fo) = inf du(fi, i 7). @)
Observe that according to the mean value theorem for all x, y > 0,

le™ —e™| <alx —y|

Therefore, for 0 << T, we have

exp(—a/otf.(t)dt) —exp<~a/0tf2(t)dt)

<a/0 |ﬁ(s>ds—/0ﬁ<s>dsl<a/0 L1(6) = fi(0) de
<d (i fiiT). (28)

|Fi(r) — Fy(1)] =

Next, for t > T,
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0 - ol < max {exp (—o [ fian). exp (= [ i) |
<max{exp<—fx/on1(u)du), exp(—a/Osz(u)du)}

<do(fi, /2, T). (29)
Combining (28) and (29) we find that, for all ¢ > 0,
A1) - BO)|<du(fi,/5T), T>0.

Therefore, p, (F,F) < d,(f1,/2; T) for all T > 0, which in view of (27) concludes the proof of
Theorem 2.

8. Joint distribution of age and tumor size at detection and its randomized form

Recall that T is the age at tumor onset, W is the time of spontaneous tumor detection measured
from the onset of disease, and S is the tumor size at spontaneous detection. Then S = f(W), where
f:]0,00) — [1,00) is a deterministic function describing the law of tumor growth. It is assumed
that :

1. random variables T and W are absolutely continuous and independent;
2. function f'is differentiable and f” > 0;
3. the rate of spontaneous tumor detection is proportional to the current tumor size with coeffi-

cient a > 0.

It follows from Assumption 3 that the p.d.f. of the random variable W is described by formula
(22).

We observe sample values of the random vector Y := (T + W,S) whose components are in-
terpreted as age and tumor size at spontaneous detection, respectively. We look at Y as a
transformation of the random vector X := (T, W), Y = ¢(X), where ¢(t,w) = (t +w,f(w)),
t,w = 0. Observe that components of X are independent random variables. The inverse function
Y =0¢:4— R, where 4 := {(u,v) € R} : 1<v<f(w)}, is given by Y(u,v) = (u — g(v),2(v)),
with g := f~!. Note that the Jacobian of y is g’. Then for the p.d.f. of ¥ we have assuming that
(u,v) €4

pr(u,v) = px(Y(u,v))g'(v)
= pr(u — g(v))pw(g(v))g' (v)
= pr(u — g(v))ps(v).
In the particular case of exponential tumor growth with rate 2 > 0 (f(w) = e**) we obtain using
formula (7)
Inv

pr(u,v) = %e“%(”_l)pT (u - T)’ u>0, 1<v<e™ (30)

Thus, the distribution of random vector Y is absolutely continuous but the support of ¥ depends
on the unknown parameter 1. As far as the asymptotic likelihood inference is concerned, the usual
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regularity conditions are not met for the distribution py. However, experience with similar
parametric settings suggests that the estimation efficiency for the parameter 4 may be expected to
be even higher than in the regular case although asymptotic normality may fail.

Suppose the distribution of the time of tumor latency 7T is known. Let {(u;,v;): 1 <i<n} be
sample data on age and tumor size at detection. The structure of the joint distribution (30)
suggests the following maximum likelihood procedure for estimation of the parameters o and A:

(1) Denote 6 = «/4 in formula (30), and find the maximum likelihood estimate, 6, of the pa-
rameter 6 using only the tumor size data {v; : 1 <i< n}. It follows (see below) that the sample {v;}
is drawn from an exponential distribution with parameter 8, and consequently

1
%z;;]”i_r

(2) Maximize the function
L(A):L}[p7<u,—l%>, u,'>0, U,'?l,

or its logarithm, to find the estimate of 1 denoted by 4. .

(3) The maximum likelihood estimate of « is given by & = 64.

The above procedure does the same job as maximizing the likelihood function based on the
joint distribution (30). To show this, let the joint density of the random variables U and V be of
the form

plu:,0) = (00 (= 22 )
withu >0, v > 1, 2> 0,and ¢ : [1,00) — (0,00). It is assumed that g(x) >0 forx > 1, f(¢) >0

for ¢t >0, and f(t) = 0 for +<0. Suppose that there exists a unique maximizer (4,6) for the
likelihood function

L(4,0) = Hp(ui, vi; 4, 0).
=1

6=

It is clear that A and 6 are unique maximizers for the functions
Sy YOI —TTeo:
Li(2) = Qf(u, z ) and Ly(0) = gg(v,, 0),

respectively. Conversely, if /> 0 and 6 are unique maximizers for these functions, the pair (i, 9) is
a unique maximizer for the likelihood function L(4, 8). Finally, observe that g(v; 6) is the marginal
density of the random variable V. Indeed, we have

/0°°f<u —@)g(v; 0)du = g(v; 0) /Ooof(t)dt = g(1; 0).

The performance of the above-described estimation procedure was studied by computer simu-
lations. A total of 50 pseudo-random samples of (u;, v;) were generated from the joint distribution
(30); each sample contained n = 100 realizations of the random vector (U, V). We used the
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composition method [49] to simulate samples of pairs (u;,v;). In accordance with this method, we
first draw v; from the marginal distribution of the random variable V, and then generate u; from
the distribution of U conditional on V = v;. The p.d.f. pr was specified by the MVK model with
the survival function given by formula (16). We used the following values of model parameters:
a=23x1011=69,4=10"B=0.1821,5 = 0.0364. These values are suggested by the
analysis of lung cancer data (Sections 4 and 5).

8.1. Simulation Experiment 1

In this experiment, we kept the parameters 4,B, and 6 at their true values and applied the
estimation procedure to simulated data in order to obtain estimates of the parameters 4 and a. In
this case, the likelihood function can be maximized by a univariate search for A with a fixed value
of 6. The estimates of A and o which resulted from each of the 50 samples were summarized by
calculating their sample means A and &, as well as the corresponding standard errors (of the
sample mean) denoted by ¢; and o;, respectively. We obtained the following numerical values:
A=1745 67=0.9, & =253 x1071°, g; = 0.34 x 10~1°. These results testify that, given the pa-
rameters 4, B and 6 are known, the estimation procedure performs well when applied to finite but
sufficiently large samples.

8.2. Simulation Experiment 2

Proceeding from the same true parameter values, the estimation procedure was applied to
simulated data to obtain estimates of all the parameters incorporated into the model. We used
algorithm FLEXI [50] to maximize the corresponding likelihood function. Since there were three
additional parameters to be estimated from simulated data, the size of each sample was increased
up to 1000. The results were summarized in just the same way as in Experiment 1 to give: 1 = 9.4,
6;=09, a=31x10"1 0¢;=31x10"", 4=95x10"% o;=36x10"% B=0.1407,
o5 = 0.0599, § = 0.0507, 65 = 0.006. The 50 estimates of the p.d.f. py(f) with the above estimates
substituted for its parameters were averaged for each value of 7. The resultant average (arithmetic
mean) agrees quite closely with the true p.d.f. pr as seen in Fig. 6.

8.3. Simulation Experiment 3

The estimation procedure was applied to a single sample of size 50 000 generated from the joint
distribution (30). The estimated parameter values were: A = 6.7, & = 2.24 x 1071 ,A=51x10"
B =0.1390, 6 = 0.0475. The true p.d.f. pr is compared with its parametric estlmate in Fig. 7.

The above simulation experiments show that estimation of the whole set of model parameters is
feasible given the model is adequate for the processes under study, but obtaining unbiased esti-
mates would require large sample sizes.

Suppose now that the process of tumor growth is described by the exponential law
f(w) =e*, w>0, with a random growth rate .. We also assume that the random parameter
0 := a/A is gamma distributed with parameters a and b. Compounding (30) with respect to the
gamma distribution of the parameter § we find the p.d.f. of the resulting randomized distribution
of the vector ¥
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Fig. 6. Simulation Experiment 2: Comparison of the true p.d.f. p; specified by the MVK model (solid line) with the
corresponding estimate (dashed line) obtained by averaging over 50 parametric estimates of the p.d.f. pr.
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Fig. 7. Simulation Experiment 3: Comparison of the true p.d.f. pr specified by the MVK model (solid line) with the
corresponding estimate (dashed line) obtained from a single sample of 50 000 pairs of observations drawn from the joint

distribution (30).

bl au/inv Ino
- £ —(b+v—1) — ¢ lds > 0 > 1.
p(u) U) I—v( ) /0 € priu o 3 u , U

a

Setting s := u — (Inv/a)t we rewrite the last formula in an equivalent form

p(u,v):%( z )"“ /Ou(u——s)“exp{—ﬁ(bij—l)(u—s)}pT(s)ds (31)

a)\Inv
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for u > 0, v > 1. Alternatively, we may assume that it is the parameter 1/4 that is gamma dis-
tributed with parameters a and b. Should this be the case, we would have

plu,v) = ;‘(ba)//lnvt"exp{—[b—i—a(v—1)]t}pT (u —tlnv)de
i [ ren { D e ()

lnv Inv

foru=0,v=1.

Once the density pr of the age at tumor onset T is specified within a certain parametric family
(e.g. using a gamma distribution or the MVK model), Egs. (31) or (32) allow us to compute p.d.f.
of the joint distribution of age and tumor size at detection. Observe that in this randomized
version the support [0, 00) X [1,00) of the distribution of random vector Y is parameter-free. The
maximum likelihood parametric inference based on the joint p.d.f. p(u, v) accommodates censored
observations under the usual censorship model [51].

9, A threshold model of tumor detection

An alternative approach to stochastic modeling of spontaneous detection was proposed and
extensively discussed in [38,52,53]. The main postulate of the model developed in these works is
that a tumor becomes detectable when its size attains some threshold value, N, which is treated as
a random variable. The authors used a linear pure birth process with random absorbing upper
barrier N to model the dynamics of tumor growth. Under this model the progression time cu-
mulative distribution function, given the threshold level N, is

FN) = (1 —e ¥, (33)

where A is the birth rate. Formula (33) implies that tumor growth starts from a single malignant
cell at time ¢ = 0.

As mentioned in Section 4, it is practical to represent the critical number of tumor cells as
N = mV, where V is the volume of a tumor, and m = 1/c is the concentration of tumor cells per
unit volume. The constant m is non-random and its values are typically large. Thus the condi-
tional progression time c.d.f., given the threshold volume V = v, is

F(tlv) = (1 —e*y™", (34)

Let f(¢v) stand for the p.d.f. of F(¢|v).

Let G(t) be the survival function of the time it takes for the initiation and promotion processes
to result in the event of neoplastic transformation. Assuming that the initiation rate is constant,
i.e. 8(f) = 0, and the stages of promotion and progression are mutually independent, the authors
of [52] used the convolution

t|v)—0/Kt—u)exp{ 9/ K(x } (uf) du (35)

to represent the conditional p.d.f., g(t|v), of the time of tumor latency measured from the date of
birth of an individual (see formulas (19) and (21)).
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Introducing a prior distribution, P(v), of the random variable V, we represent the p.d.f. of the
time (age) of tumor detection as

)= | " g(to)p(v) do, (36)

where p(v) is the density of P(v), and the distribution P(v) is assumed to have finite first moment.
One is primarily interested in the conditional p.d.f. of tumor volume at detection (given a tumor is
detected at time #), hereafter denoted by w(v|t). By virtue of Bayes’ formula we have

g(tlv)p ( ) g(tlv)p(v)
Jo” g(tluw)p( u_ g(t) (37)

where g(t|v) and g(¢) are given by (35) and (36), respectively.

This model yields an interesting asymptotic result showing that the conditional p.d.f. w(v|¢)
assumes a very simple form when ¢ tends to infinity. This limiting form does not involve the
promotion time distribution K and it also has some distinct advantages as far as estimation
problems are concerned [53]. It follows from (34) and (35) that

g(t|v) = 20mo /Ote"'("s)(l — e M=)k () exp { - B/OSK(x)dx} ds = AOmvy(t).

w(vlt) =

Proven in [53] is the following theorem.

Theorem 3. The following assertions hold for the limiting behavior of the function Y(t) as t — oo:
1. If A< 0, then

Y1) ~ e,

where

I= /OOO exp {As- G/OSK(x)dx}K(s)ds.

2. If A="0and [;[1 — K(s)]ds < oo, then

Y (1) ~texp{ /K }

3.If 2> 0, then

0 NJexp{ - e/otK(x)dx}

with

1
v~ 1 0/) = _-B(m —

where B(x, y) is the beta function.
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Corollary 1. If mv — oo, it follows from Theorem 2 that the limiting conditional p.d.f. of tumor size
at detection is of the form

i _ v*p(v) . Q}
fim () = et w=min{1,7 ]

A special case (u = 1) of this distribution is known as the length-biased sampling distribution in
the theory of stationary point processes [54]. Analysis of data on breast cancer [53] revealed that
the limiting distribution is quite adequate starting with the age of 50.

In studying stability of the posterior p.d.f. of tumor volume at detection under perturbation in
the prior p.d.f. p [53], the following metric:

b= | " W) — f(w)| du

is a natural choice. The corresponding theorem and some other stability results are described at
length in [53]. An extended discussion of the above-described model in the context of parametric
analysis of clinical data on breast cancer is presented in [55].

10. Modeling metastatic process

Metastatic progression of cancer can be modeled proceeding from the assumption that shed-
ding a metastasis is a quantal response event. From the practical point of view, it seems important
to derive a formula that gives the probability that at the time of detection, the primary tumor has
not yet metastasized. This problem is tractable if we resort to a deterministic description of tumor
growth. In doing so, we still can incorporate an additional randomness into the model by allowing
for random values of its numerical parameters.

To derive a useful formula for the probability of the event of interest suppose that, in the course
of growth, the tumor produces metastases with an intensity which is proportional (with coefficient
{) to its current size N(¢). We assume that N(¢) is a non-random function of time. Specifically, we
assume that the process of shedding metastases by the primary tumor is Poisson with intensity
{N(¢). Each metastasis is assumed to develop independently of the subsequent growth of the
primary tumor and of other metastases. Any given metastasis grows deterministically and the rate
of its detection is proportional (with coefficient a,) to the current metastasis volume. In other
words, given the time of metastasis origination 7, the rate of its detection at time ¢ > 7 equals
M (t — 1), where M is the size of the metastasis. The primary tumor is detected at a random time
W, measured from the time of tumor onset ¢ = 0. The rate of the primary tumor detection at time ¢
is equal to o;N(¢). Let W, be the time (also measured from ¢ = 0) to the detection of the first
metastasis.

Yorke et al. [56] considered a model of metastatic spread under a deterministic threshold
mechanism of tumor detection. The authors used similar assumptions on growth characteristics of
primary and metastatic tumors, but they did not evaluate the probability Pr{W; < W,} in their
computations.
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Note that

TC(t) _ e——txzj;)M(u)du (38)

is the probability that a metastasis of age ¢ remains undetected. The probability that the primary
tumor produces k£ metastases during the time ¢ is

nil) =35 (c/otN(u)du)kexp{ ~0 [ N, ko

Let 7; be the time of the ith metastasis formation given that the number of metastases produced by

time 7 is equal to k and i < k. Now we use the well-known fact that 7y, ..., 7, are independent and
identically distributed random variables, having the common density
p(u) —_ ON(z)dz’ XU (39)
0, u>t,

see [57]. Then

1 = Pr{W < W}
k

_ /0 " alzv(t)e—“’fé”@)d"g pk(t)( /O Ip(u)n(t—u)du) ds

_ /0 ooa,JV(t)e'“'fo"V(“)d"exp{ —¢(1 - /0 l p(u)rc(t-u)du) /O !N(u)du}dt,

where 7(¢) and p(¢) are given by formulas (38) and (39), respectively.

The last formula assumes an especially simple form if the growth functions N(¢) and M(¢) are
exponential with constant proliferation rates 4; and 4, respectively. In this case, introducing the
notation

t Ayt t o i
b(t) = / p()n(t —u)du = flle / e—hing A l)du,
0 eMt — ] 0
we have
& e).][ _ 1
0 1

Incorporation of the distribution of time T of tumor onset into the above formulas presents no
difficulties. Randomized versions of the model are also pretty straightforward.

We used formula (40) to conduct numerical experiments with the aim to study the behavior of
Pr{W; < W5} as a function of model parameters.

Example 1. In this numerical experiment, the primary and the secondary (metastases) tumors
grow at the same rate (4, = 4;) with the corresponding detection rate constants being equal
(o1 = ap). Computations were carried out in accordance with formula (40) at the following values
of model parameters: o; = a; = 0.03, 4, = 4, = 3.0. These values have no relevance to any actual
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Fig. 8. The probability II = P-{W, < W} as a function of {. The other parameter values are: oy = o, = 0.03,
A =1, =3.0.

biological data and serve only as a purpose of illustration. The dependence of II = Pr{W; < W}
on the parameter ( is shown in Fig. 8. This dependence appears to be fairly flat in the given range
of model parameters.

Example 2. Presented in Table 1 are the values of IT = Pr{W; < W,} as a function of the sensi-
tivity parameter o, and the metastatic growth rate 1,. The dependence of IT on the sensitivity
parameter o, in the case of equal growth rates for the primary and metastases is shown in Fig. 9.
All profiles of the dependencies under study indicate a low sensitivity of the probability IT to
variations in the parameters of this model.

The probability II can also be estimated non-parametrically by the corresponding relative
frequency in cohort studies. Therefore, the usefulness of the above analytic formula for IT consists

" mainly in that the parametric estimate can be compared with its non-parametric counterpart,

thereby suggesting an additional criterion for model validation. However, this criterion seems to
be rather weak. Indeed, the results of the two numerical experiments suggest that the probability
IT is relatively insensitive to the basic parameters incorporated into the model. In other words,
inaccuracy of parameter estimates (obtained from data on age at diagnosis of the primary tumor
and metastasis-free survival) does not appear to affect much the resultant estimate of the prob-
ability IT; this conclusion is very preliminary since it has been drawn from numerical experiments
carried out in a limited range of parameter values.

Table 1
The probability IT = Pr{W; < W} as a function of &y and /2, (; = 0.03, A, = 3.0, =0.1)
oy A
2.0 2.5 3.05 3.5 4.0
0.015 0.966 0.956 0.941 0.924 0.903
0.03 0.936 0.919 0.896 0.874 0.848

0.06 0.885 0.861 0.831 0.804 0.775
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Fig. 9. The probability Il = P-{W; < W,} as a function of ay. The other parameter values are: o = 0.03,
A =72=30=0.1
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Abstract—A population-based cohort consisting of 126,141 men and 122,208 women born be-
tween 1874 and 1931 and at risk for breast or colorectal cancer after 1965 was identified by linking
the Utah Population Data Base and the Utah Cancer Registry. The hazard function for cancer inci-
dence is estimated from left truncated and right censored data based on the conditional likelihood.
Four estimation procedures based on the conditional likelihood are used to estimate the age-specific
hazard function from the data; these were the life-table method, a kernel method based on the Nelson
Aalen estimator, a spline estimate, and a proportional hazards estimate based on splines with birth
year as sole covariate.

The results are consistent with an increasing hazard for both breast and colorectal cancer through
age 85 or 90. After age 85 or 90, the hazard function for female breast and colorectal cancer may reach
a plateau or decrease, although the hazard function for male colorectal cancer appears to continue
to rise through age 105. The hazard function for both breast and colorectal cancer appears to be
higher for more recent birth cohorts, with a more pronounced birth-cohort effect for breast cancer
than for colorectal cancer. The age specific hazard for colorectal cancer appears to be higher for men
than for women. The shape of the hazard function for both breast and colorectal cancer appear to
be consistent with a two-stage model for spontaneous carcinogenesis in which the initiation rate is
constant or increasing. Inheritance of initiated cells appears to play a minor role. © 2001 Elsevier
Science Ltd. All rights reserved.

KeyWOrdS—Hazard function, Truncation, Survival analysis, Breast cancer, Colorectal cancer.

1. INTRODUCTION

The shape of the hazard function may lead to insights into the biology of carcinogenesis which
may not be easily discernable from a study of the survival function alone. For example, it is
typical in the analysis of tumor recurrence data to find a hazard function that is bimodal or
unimodal, and that tends to zero as time tends to infinity [1]. The modes of the hazard may
be interpreted biologically as arising from two different types of failure, one that tends to occur
earlier and one that tends to occur later. The decrease in the hazard function to zero may lead
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one to conclude that there is a nonzero cured fraction. In fact, if we let A(t) denote the hazard
function, and p the probability of cure, it follows from the formula

t
p= tlim exp {—/ Au) du}
— 00 0

that there are individuals who have been “cured” in the population exactly when the hazard
function has finite integral. In particular, lim;_.o, A(t) = 0, provided the limit exists.

If the hazard function under study is from disease incidence, the “cured fraction” must be
reinterpreted as the fraction of the population that is “immune” to the disease. If the cumulative
hazard appears to be bounded, for example, one should expect the existence of a nonzero inmnne
fraction. More generally, a large degree of heterogeneity in disease susceptibility may lead to a
population hazard function with one or more well-defined maxima. The maxima may correspond
to discrete subpopulations with different genetic predisposition to disease. A maximum may also
result from a continuous frailty, as the surviving population at higher ages may be overrepresented
by individuals with lower risk [2].

Both breast and colorectal cancer are syndromes in which an inherited susceptibility has been
shown to play a role. Inherited mutations in p53, BRCA1, BRCA?2, the ataxia-telangiectasia
gene (AT), HRAS, and the androgen receptor gene (AR) have been shown to play a role in breast
cancer susceptibility [3]. About 56% of carriers of the mutation BRCA1 or BRCA2 will get
breast cancer by the age of 70 years [4]. BRCAL1 has an estimated allele frequency of between
0.0002 and 0.001 (95% CI) [5], and accounts for about 3% of diagnosed breast cancer [6]. The
allele frequency of mutations in BRCA2 is estimated at 0.00022 [7]. Germline mutations in
p53 and AR are extremely rare, and mutations in the HRAS1 minisatellite locus which confer
increased risk of breast cancer are also rare, having an estimated population frequency of 6% [3].
In a study of 100 Finnish breast cancer families analyzed by protein truncation tests and direct
sequencing, Vehmanen et al. (8] found that only 21% of breast cancer families were accounted
for by mutations of BRCA1 and BRCAZ2, providing indirect evidence for the existence of other,
undiscovered breast cancer genes.

Indirect evidence also exists for the existence of additional colorectal cancer genes. Inherited
mutations in polyposis coli (APC) gene and the hereditary nonpolyposis colon cancer syndrome
(HNPCC) genes hMSH2, and hMLH1 have been shown to play a role in colon cancer susceptibil-
ity [3]. After segregation analysis of 203 pedigrees, Houlston et al. [9] concluded that dominant
colorectal cancer genes with a frequency of 0.006 account for an estimated 81% of colorectal
cancers in patients under 35, 59% in patients between 35 and 49, decreasing to 16% in patients
over 65. The I1307K 1nutation of the APC gene, found in Ashkenazi Jews, confers an estimated
relative risk of 1.7 for colorectal cancer (95% CI 1.01-2.87) [10]. APC and HNPCC are rare, and
contribute to a small percentage of colorectal cancer cases [3].

Additional insight can be gleaned from the hazard function for cancer incidence in the frame-
work of a mechanistic model of carcinogenesis. The most widely accepted model is the Mool-
gavkar-Venzon-Knudson two-stage clonal expansion model [11,12]. The Moolgavkar-Venzon-
Knudson model has the following assumptions.

AssuMPTION A. Normal, susceptible target cells are initiated according to a (nonhomogencous)
Poisson process with intensity v(t).

AssuMPTION B. The expansion of the colony of initiated cells and malignant transformation is
specified by a stochastic birth-death-migration process with the division, death (or differentiation)
and transformation. Premalignant cells either divide into two premalignant cells with rate a(t),
die with rate B(t), or divide asymmetrically into one premalignant cell and one malignant cell
with rate pu(t).

It has been shown that the hazard function for the Moolgavkar-Venzon-Knudson model with
constant parameters increases monotonically and approaches an asymptote [13]. An asymptotic
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value for the hazard is also reached for the Moolgavkar-Venzon-Knudson model with piecewise
constant parameters, and in that case, the value of the asymptote depends only on the value of
the coefficients in the unbounded interval [13,14].

Expressions for the survivor function were first obtained by Moolvavkal and Luebeck [13]. A
simple explicit formula for the survivor function S(t) for the Moolgavkar-Venzon-Knudson model
with constant parameters was obtained by Kopp-Schneider et al. [15] and Zheng [16],

2060.5(—a+ﬁ+u—c)t v/a

= | Carpraror@a Bntoe

: 1)

where ¢ = \/ (a+ B+ u)? — 4daf. Zheng also presented an expression for the probability gen-
erating function for the number of malignant cells given a single malignant cell at time ¢ = 0,
allowing an expression for the promotion time distribution

(a-B-pte)a—B-—p—ce+(a—-F—-p+c)—a+B8+p+c)
20[(a-B—p+cle et +(—a+f+p+c)

to be given. It is easy to see that S(t) and F(t) above are related by the formula
t
S(t)zexp{—u/ F(IL‘)d."L‘}, (3)
0

which was shown by Hanin and Yakovlev [17] to be valid in a more general setting.
Yakovlev and Tsodikov [18] replace Assumption B above with the following assumption.

F(t) = (2)

AssuMPTION C. Progenitor cells are transformed into malignant lesions at a random with cu-
mulative distribution function F(zx). All progenitor cells are promoted independently of one
another.

Assuming F(0) =0, it follows that the plocess of malignant transformation is also a Poisson

process, with integral rate A(t fo F(t — u)du. As in the Moolgavkar-Venzon-Knudson
model, the smlplest model of spontaneous carcinogenesis takes v(t) = v to be constant, in which
case A(t) = v fo u) du and the hazard function for time-to-tumor, given by A(t) = vF(t), i

nondeCLeasmtT The plobabxhty S(t) that there are no malignancies by time ¢ is then given by (3)

This model may easily be modified to handle inher ited lesions, via the limiting case where v is
taken to be a delta function at the origin. If F(t) is assumed to be absolutely continuous, then
the integral rate A(t) is equal to vF'(t) and the hazard function A(t) = F'(t) = f(t), where f(¢)
is the density function associated with F(t). We see that the hazard function for spontaneous
and inherited lesions are quite likely to have very different shapes.

Even though a thorough study of the hazard function may lead to new insight into the process
of carcinogenesis, few if any population-based cohorts have been analyzed to determine the hazard
function for cancer incidence. In addition, time-dependent variation in environmental risk factors
for cancer may cause estimates from a cross-sectional study to be misleading. In this paper, the
age specific hazard function for both breast and colorectal cancer incidence are estimated using
data from the Utah Cancer Registry and the Utah Population Data Base. We see that the hazard
function for both these types of cancer appears to be increasing monotonically, at least through
age 85 or 90. In the context of the above mechanistic models of carcinogenesis, we will see that
risks for both these cancers at the population level appear to be relatively homogeneous, with
negligible inherited component.

2. METHODS

2.1. Data

The data for this study was obtained by linking records from the Utah Population Data Base
(UPDB) with the Utah Cancer Registry (UCR). The UPDB consists of the genealogical records
of more than 1,000,000 individuals who were born, died, or married in Utah, or en route to Utah
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during the nineteenth and twentieth centuries. Since 1973 the UCR has been reporting to the
National Cancer Institutes Surveillance Epidemiology and End Results (SEER) program, and is
required to maintain very high standards for case reporting and follow-up, and to periodically un-
dergo quality control audits by SEER personnel to assure uniformly high quality and consistency
from year to year. The available follow-up information comes either from Utah death certificates,
which have been linked to the UPDB genealogical data every year from 1933 through the begin-
ning of 1997, or from linkage of the HCFA beneficiary data to the UPDB. The study population
consisted of 126,141 men and 122,208 women recorded in the Utah Population Database, who
were born from 1874 to 1931 and for whom follow-up information is available that places them
in Utah during the years of operation of the Utah Cancer Registry (1966-present). Subjects
with purported follow-up past age 105 were excluded from the data. There are 5,372 cases of
female breast cancer and 5,177 cases of colorectal cancer represented in the data. Analyses were
performed on subcohorts based on birth year (1874-1889, 1890-1899, 1900-1909, 1910-1919, and
1920-1931) and gender. For each gender, the entire cohort (birth years 1874-1931) was also ana-
lyzed as a whole. The total number of subjects and cases of breast and colorectal cancer for each
birth subcohort and gender are given in Tables 1 and 2. Male breast cancer was not analyzed.

Table 1. Number of female subjects and cases of breast and colorectal cancer. strat-
ified by birth year.

Number of No. of Breast No. of Colorectal

Birth Years Subjects Cancer Cases Cancer Cases
18741889 10,115 145 116
1890-1899 19,352 564 435
1900-1909 27,138 1258 755
1910-1919 31,162 1709 752
1920-1931 34,441 1696 448

Total 122,208 5372 2106

Table 2. Number of male subjects and cases of colorectal caucer, stratified by birth

year.
Number of No. of Colorectal
Birth Years Subjects Cancer Cases
1874-1889 6,850 101
1890-1899 16,307 341
1900-1909 27,122 768
1910-1919 34,731 874
1920-1931 41.131 587
Total 126,141 2671

2.2. Truncation: Nonparametric Estimation

We wish to estimate the age specific hazard function for breast and colorectal cancer from the
data described above, taking into account that the data is subject to random truncation: cases
which occurred during or before 1965 are not recorded in the dataset. Subjects were between the
ages of 34 and 86, at the time of truncation. Thus, analysis of the data must take into account not
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only to the effects of right censoring, but also the effects of left truncation due to delayed entry
into the risk set. The topic of random truncation is not mentioned in several authoritative texts
such as [19] and [20], and may be unfamiliar to some readers, and therefore, will be discussed in
this and the following section.

Let the truncation time Y have distribution function G(y) and the failure time (time of cancer

diagnosis) X have distribution function F(z). We require that truncation be independent of

failure and for simplicity assume no censoring for the present. Observations are conditional
on X > Y. Let G*(y) and F*(z) be the corresponding distribution functions, conditional on
X >Y. Let S(z) =1 — F(z) be the survivor function of X. Suppose that we have observations
(Y7, X5),..., (Y, X%) from the conditional distribution. The full likelihood of the observed data
is given by

" [dF (X;) dG (Y;)
L= J J
] | SRR, @)
j=1
where a = [ f (z)dG(y). A key observation is that if X and Y are independent, then the

hazard of X given X > Y =y at z > y is equal to the hazard of X at z [21,22]. This observation
leads to the result, first mentioned by Kaplan and Meier [23], that if the distribution G(t) is
allowed to vary freely, the natural generalization of the product limit estimator, given by the

formula )
s0= 11 (1~ 7es) )

Xr<t

where R(u) = #{Y;* < U < X/} is the number at risk at U, is the nonparametric maximum
likelihood estimator (NPMLE) of the survivor function S(t) of X (see, for example, [21,22,24]).

This result extends naturally to the case with random independent censoring [24]. It also
easily follows that in the nonparametric setting (again with no censoring), maximizing (4) is
equivalent to maximizing the conditional likelihood of (X7,...,X}) given (Y7*,...,Y)), which
can be written

F(X5) .
L=
¢ Hﬂw (6)
(see, for example, [23-26]). Maximizing the conditional likelihood also leads to the familiar
Nelson-Aalen estimator for the integrated hazard function H(t) of X [24], which is given by

- S R (7)

NPt
These results can be extended to the case of right censoring [24].

2.3. Truncation: Parametric Models

We consider the situation where X and Y are independent, F(z) is parametrized. while G{y)
is allowed to vary freely. In a later section, F(z) will be come from a quadratic spline model.

The data are independent pairs (y1,%1)s- -, (Yn, Zn) from the joint distribution (Y, X), condi-
tional on (Y < X). We suppose, for simplicity, that there are no ties among y1,y2,...,¥n. and
suppose X has absolutely continuous distribution function coming from a family F'(z;z") param-
eterized by a vector Z, with corresponding survival function S(z;z) = 1 — F(z;Z) and density
f(z; ). The NPMLE for G should consist of (unknown) point masses qi1, g2, . - . . gn placed at the
points ¥1,¥2,...,Yn. The logarithm of the complete likelihood (4) can be rewritten

n

log(L) = Y _ [log (f (@ £)) +log (¢:)] - nlog | Y S (i £) i - - (8)
J=1

i=1
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If we factor the out the part of the likelihood corresponding to (6). the logarithm is given by

log(CL) = > [log (f (%)) —log (S (y:: £))]. (9)

i=1

We now discuss the changes which must be made when censoring and additional covarites are
present. If §is a vector of additional covariates, A(x,§;Z) denotes the hazard associated with
F(x.§:2) and Az, 5 Z) the cumulative hazard, we note that (9) becomes

n

log(CL) = Z log (M(@;,8:57)) — (A2, §:2) — Ay, 5 :2))]. (10)

i=1

In the presence of right censoring which is independent of both the failure and truncation times.
x; is replaced in the above formulation by the minimum of the failure and censoring time. The
term f(z,§;Z) in the likelilood is replaced by f(a,5:2)0S(x,5: 2177, where 6; = 1 if observa-
tion i is a failure and §; = 0 otherwise, and the conditional likelihood (6) (with x;. 5. and y;
regarded as fixed) becomes

CL - ﬁ [f (21,5:2)° S (2, 5: 5070

pales S (yi, 813 9)
In this setting, log(C'L) becomes
log(CL) = > [6,log (A (1. 82 2)) = (A (2,5 2) — A (3. 5:: 9))). (11)

i=1

In the subsequent analysis, we choose to maximize (11) rather than the full likelihood. In a
separate paper, we will show that this is equivalent to maximizing the full likelihood, under
appropriate conditions.

2.4. Spline Models

We choose to model the hazard via quadratic splines as in [27]. A quadratic spline with m
knots specifies the hazard to be of the form

m

2
An(t) =D q0it" + > vt = 7)1, (12)

i=0 g=1

where ()4 = max(z,0). For each birth cohort, we fit splines with kunots which were equally
spaced in the interior of the interior [Twin, Tinax]. where Ty, is the minimum truncation age
in the cohort and Tihax the maximum follow-up (failure or censoring) time. Restrictions were
placed on the cocflicients to ensure that A, (¢) remained positive for all . Thus, with 1 knots the
number of parameters was m + 3. Models were fit using maximum likelihood techniques applied
to the conditional likelihood, as given by (11).

The hazard function was estimated for breast cancer incidence (women only) and for colorectal
cancer incidence (both men and women). The spline estimates were computed by maximizing
log(C'L) using the algorithm of Powell [28]. We started with one knot and incrcased the mumber
of knots until the fit was not improved, as determined by the likelihood ratio test at the signifi-
cance level a = 0.05. Two other subeohort estimmates of the hazard function were computed for
comparison with the spline estimator; a life table version of (5). and a Gaussian kernel estimate
based on the Nelson-Aalen estimator (7).
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Figure 1. Four estimates of the age-specific hazard function for female breast cancer,
stratified by birth cohort: a spline estimate (labeled “Spline”), a kernel estimate
based on the Nelson-Aalen estimator (labeled “Kernel”), a life table estimate (labeled
“Life Table”), and a proportional hazards spline estimate using all strata, with birth
year as sole covariate, set at the stratum mean (labeled “Combined Spline”).
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Figure 1. (cont.)

2.5. Proportional Hazards

It became clear, when fitting models to the subcohorts, that there was a birth cohort effect in
the data. At the same time, we wished to have estimates of the hazard for the entire age range of
34-100+ years. We therefore fit proportional hazards models with splines A;,,(¢) for the baseline
hazard and a single covariate s representing birth year. The resulting hazard function has the

form

Am(t, s, 8) = exp(8s) A ().
The model was again fit using the conditional likelihood of the form

n

log(CL) = Z [6:1og (Am (24, 8::8)) — (A (1,555 8) — A (i, 55 8))]

=1

which is (11) with A(z, 5, ) = A2, 845 6).

3. RESULTS

(13)

Estimates of the age specific hazard for female breast cancer are presented in Figure 1 for
the 18741889, 18901899, 1900-1909, 1910-1919, and 1920-1931 birth subcohorts. Age specific
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Figure 2. Four estimates of the age-specific hazard function for female colorectal can-
cer, stratified by birth cohort: a spline estimate (labeled “Spline”), a kernel estimate
based on the Nelson-Aalen estimator (labeled “Kernel”), a life table estimate (la-
beled “Life Table”), and a proportional hazards spline estimate using all strata, with
birth year as sole covariate, set at the stratum mean (labeled “Combined Spline”).
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Figure 2. (cont.)

hazards for colorectal cancer are presented in Figures 2 and 3, stratified by birth cohort and
gender. Each figure presents three estimates of the hazard from the subeohort alone, namely
the life table estimate, the kernel estimate based on the Nelson-Aalen estimator and a spline
estimate, as well as one gender-specific estimate from a proportional hazards model with birth
year as covariate, fit to data from all birth subcohorts (1874-1931). The covariate is set to the
mean birth year of the subcohort. We note that approximately 40 years of follow-up are available
for any one subcohort, as follow-up data are available from approximately 1965-1995.

We found that splines with very few knots appeared to fit the data. In all but one case, two
knots were sufficient for the spline estimates, as determined by the likelihood ratio test, and in the
remaining case (breast cancer, birth years 1874-1889), one knot sufficed. The hazard function for
both breast and colorectal cancer appears to increase monotonically, at least until the age of 85
or 90, when the subcohort specific estimates of the hazard estimates for women for both breast
and colon cancer appear to flatten or decrease while the estimate for men appears to continue
to increase. (In each of the three cases, the proportional hazards model provides estimates of
the hazard function which increase through all ages.) We also note that, in all the proportional
hazards models, the birth cohort effect was highly significant (p < 0.0001). We also see from the
subcohort analysis that the proportional hazards assumption appears to be adequate, at least up
until the age of 85 or 90, when proportionality may fail for women.

-
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Figure 3. Four estimates of the age-specific hazard function for male colorectal
cancer, stratified by birth cohort: a spline estimate (labeled “Spline”), a kernel
estimate based on the Nelson-Aalen estimator (labeled “Kernel”), and a life table
estimate (labeled “Life Table”), and a proportional hazards spline estimate using all
strata, with birth year as sole covariate, set at the stratum mean (labeled “Combined

Spline™).
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Figure 4. Comparison of the age-specific hazard function estimates for female breast
cancer for various birth cohort strata from a proportional hazards model spline model.
Birth year covariate set at the mean value for each stratum: 1884.41 for the 1874—
1889 stratum, 1894.90 for the 1890-1899 stratum, 1904.54 for the 1900-1909 stratum,
1914.52 for the 1910-1919 stratum, and 1925.24 for the 1920-1931 stratum.
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Figure 5. Comparison of the age-specific hazard function estimates for female colorec-
tal cancer for various birth cohort strata from a proportional hazards model spline
model. Birth year covariate set at the mean value in each stratum: 1884.41 for the
1874-1889 stratum, 1894.90 for the 1890-1899 stratum, 1904.54 for the 1900-1909
stratum, 1914.52 for the 1910-1919 stratum, and 1925.24 for the 1920-1931 stratum.
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Figure 6. Comparison of the age-specific hazard function estimates for male colorectal
cancer for various birth cohort strata from a proportional hazards model spline model.
Birth year covariate set at the mean value in each stratum: 1884.74 for the 1874-
1889 stratum, 1895.06 for the 1890-1899 stratum, 1904.74 for the 1900-1909 stratum,
1914.57 for the 1910-1919 stratum, and 1925.31 for the 1920-1931 stratum.

We also note that the colorectal cancer risk estimates are higher for men than for women. For
example, the estimated age specific yearly hazard for the 1920-1931 birth cohort at age 70 is
approximately 0.0013 for women, and about 0.0017 for men, or about 30% higher for men.

The estimated hazards from the proportional hazards models over a seventy year range are
presented in Figures 4-6. The estimated hazards increase as the birth cohorts become more
recent, with coefficient estimates of 3 = 0.0347 (year—!) for female breast cancer, 3 = 0.016
(year~!) for female colorectal cancer, and 3 = 0.020 (year™!) for male colorectal cancer. Thus,
the additional hazard for more recent birth cohorts appears to be more pronounced for breast
cancer than for colorectal cancer.

4. DISCUSSION

As noted in the introduction, the presence of a large degree of heterogeneity in the risk for
a population may lead to a decreasing age specific hazard function. Since we see little or no
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evidence of a decreasing hazard for either breast or colorectal cancer at least until age 85 or 90,
it appears that the risk is relatively homogeneous for both these cancers over this age range. In
particular, there appears to be little evidence for a high immune fraction for either breast or
colorectal cancer. We should also note that the presence of a monotone increasing hazard over a
limited range does not completely rule out heterogeneity. The data is quite consistent with the
degree of heterogeneity that might result from known cancer genes, as long as the risk is generally
increasing (at least through age 90) in the population as a whole. There is little or no evidence of
an inherited component to the risk, as a large inherited component might be expected to provide
a local maxima to the hazard rather early in life, certainly prior to age 85.

One may extend the more general two-stage model of carcinogenesis presented in the introduc-
tion to take cell death into account, by adding a Poisson process of cell death which competes
with the process of malignant transformation, as suggested by Yakovlev and Polig [29]. This
model has been successfully applied to data from radiation induced and chemically induced le-
sions [30-32]. With the cell death component, it becomes less clear that the hazard function
should increase monotonically in the case of spontaneous carcinogenesis. In fact, in the simplified
case of constant rates vy of initiation and vy of cell death, and arbitrary cumulative distribution
function F(t) for time to transformation of intermediate lesions, the hazard function for time to

tumor has the form
A(t) = vy exp (—wat) F(t). (15)

We note that according to this model the clock for cell death in this model starts at birth. If
the constant vy > 0 in (15), then A(t) must decrease exponentially since F'(t) approaches one
as t approaches infinity. We conjecture that in the present context the cell death component is
very small, so that it does not dominate A(t) until after age 85. The higher hazard rate for male
colorectal cancer, as well as the continued increase in hazard through age 105, may be attributed
to a smaller rate of cell death. Another possibility is that the cell death should not be measured
from birth, but from formation of the initiated cell (as in another variation of the model suggested
in [29}).

We have noted in the Results section that proportionality of hazard appears to fail after age 90
for both breast and colorectal cancer in women. This result may be due to sampling variability,
or additional bias unique to women at these high ages. We note that there are only 116 female
breast cancer cases and 77 female colorectal cancer cases after age 90. They are distributed over
a fifteen year period, for an average of 7.7 breast cancer and 5.1 colorectal cancer cases per year
in this range. In addition, data linkage is more difficult for women, who are more likely to have
changed names than men. An additional indication that the lack of proportionality for women
may be spurious is that we do not see this apparent lack of proportionality in men.
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Measures of familial aggregation as predictors of

breast-cancer risk

KM BOUCHER AND RA KERBER

Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA

Background Several measures of familial disease aggrega-
tion have been proposed, but only a few of these are
designed to be implemented at the individual level. We
evaluate two of them in the context of breast-cancer
incidence.

Methods A population-based cohort consisting of 114 429
women born between 1874 and 1931 and at risk for
breast cancer after 1965 was identified by linking the
Utah Population Data Base and the Utah Cancer Reg-
istry. Two competing methods were used to obtain pre-
dictors of familial aggregation of risk: the number of
first-degree relatives with breast cancer (N1ST) and the
familial standardised incidence ratio (FSIR), which
weights the disease status of relatives based on their
degree of relatedness with the proband. Relative risks
were estimated using Mantel-Haenszel, Poisson regres-

sion and spline regression methods. The age-dependent
hazard function was also estimated.

Results Compared to a baseline category containing 91.5%
of the subjects, the 0.7% of subjects identified as high
risk using the FSIR criterion had a relative risk of about
2.8, while those identified as high risk using the N1ST
criterion had a relative risk of 2.0. Moderate-risk sub-
jects had a relative risk of about 1.75 using either criteri-
on. FSIR was a significant predictor of risk even for
those with no affected first-degree relatives. No decline
in the baseline risk was observed at advanced ages.

Conclusions FSIR appears to be a better predictor of
breast-cancer risk than N1ST, particularly for high-risk
subjects.

Keywords familial risk, hazard function, truncation, sur-
vival analysis, breast cancer.

Introduction

Heterogeneity in a population may lead to population
estimates of the hazard that do not reflect individual
risk. For example, if we let A(¢) denote the hazard func-
tion, and p the probability of immunity to a particular
disease, it follows from the formula:

t
p=1lim__ exp[ —jl(u)du] €))
0

that there are individuals who are ‘immune’ in the popu-
lation exactly when the hazard function has finite inte-
gral. In particular, lim ; _M/I(t) = 0, provided the limit
exists. More generally, a large degree of heterogeneity in
disease susceptibility may lead to a population hazard-
function with one or more well-defined maxima. The
maxima may correspond to discrete subpopulations with
different genetic predisposition to disease. A maximum
may also result from a continuous frailty, as the surviv-
ing population at higher ages may be over-represented
by individuals with lower risk!.

There is evidence of heterogeneity for most cancers.
According to Easton?, ‘All cancer types exhibit familial

clustering, suggestive of a significant inherited compo-
nent’. He goes on to conclude that, as of 1994, known
cancer genes accounted for 0.5-1% of all cancer cases,
and that this figure would increase as more cancer genes
are discovered. The breast-cancer genes BRCAI and
BRCA2 both contribute to an increased risk of breast
cancer. BRCAI has an estimated allele frequency of
0.0002-0.001 {95% confidence interval (CI)]?, and
accounts for about 3% of diagnosed breast cancer*. The
allele frequency of mutations in BRCA2 is estimated at
0.00022°. Vehmanen et al.® found that only 21% of
breast-cancer families were accounted for by mutations
of BRCAI and BRCA2, providing indirect evidence for
the existence of other, undiscovered breast-cancer
genes.

In our previous paper’, linked population-based data
from the Utah Cancer Registry (UCR) and the Utah
Population Data Base (UPDB) was used to estimate the
population-level hazard function for breast and colorec-
tal cancer, stratified by birth cohort. We found that the
hazard functions for both breast and colorectal cancer
appeared to be monotone increasing functions for both
genders and all birth cohorts. This contrasts with the
model-based estimates of Moolgavkar er al.®, who
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found the hazard function to decrease sharply starting
sometime past the age of 70. The lack of clear multiple
modes in the hazard function highlighted the fact that
more delicate methods would be needed to account for
the known heterogeneity of risk.

A number of measures of familial disease aggrega-
tion have been used or proposed, but only a few of these
are designed to be implemented at the individual level.
The most common epidemiological measure of familial
risk is an indicator of whether one or more first-degree
relatives have been diagnosed with cancer, or some
other disease. Khoury and Flanders® have noted that
measures of this sort are prone to bias under a variety of
conditions. Nonetheless, it is a widely used and easily
understood measure of familial risk that can easily be
ascertained in a clinical setting. A second category of
family-history measures, suggested by Kerber'?, is
derived from the complete risk experience of all observ-
able biological relatives, adjusted for the age, sex, num-
ber and degree of the relatives. The total familial risk is
summarised as a familial standardised incidence ratio
(FSIR), or a familial rate (FR). FSIR and FR are less
prone to bias and substantially more sensitive than a
crude indicator variable, but require fairly detailed fami-
ly history data, which may rarely be available in a clini-
cal setting.

In this paper, age-specific estimates of the relative
risk (RR) for breast cancer are obtained using three dif-
ferent methods, with the number of affected first-degree
relative (N1ST) and FSIR as predictors of risk. We show
that FSIR performs better in identifying subjects at high
risk. As a by-product of the analysis we find that the
risk for breast cancer appears to be increasing as a func-
tion of age, even at advanced ages.

Data

The data for this study were obtained by linking records
from the UPDB with the UCR. The UPDB consists of
the genealogical records of more than 1000 000 indi-
viduals who were born, died, or married in Utah, or en
route to Utah, during the nineteenth and twentieth cen-
turies. The available follow-up information comes either
from Utah death certificates, which have been linked to
the UPDB genealogical data every year from 1933
through the beginning of 1997, or from linkage of the
HCFA beneficiary data to the UPDB. The study popula-
tion consisted of 122 208 women recorded in the Utah
Population Database, who were born during 1874-1931
and for whom follow-up information was available that
places them in Utah during the years of operation of the
Utah Cancer Registry (1966-present). Subjects with
purported follow-up past age 105 were excluded from
the data. Potential subjects who had no relatives who

were also in the risk set, and therefore for whom no
measures of familial aggregation could be computed,
were removed from the data. Excluding these two
groups removed an additional 7779 women, leaving a
study population of 114 429 women. There are 5092
cases of female breast cancer in the data. Only female
breast cancer was analysed. Additional details on the
data are given in Boucher and Kerber”.

Methods

Number of first-degree relatives

The simplest and most easily understandable measure of
familial aggregation is the number of affected N1ST. Of
the 114 429 women in the data set, 9765, or approxi-
mately 8.5%, had at least one N1ST with breast cancer
and 795 women, or 0.69%, had two or more affected
NI1ST. Having more than two N1ST with breast cancer
was extremely rare: 56 women had three, and 10 women
had the maximum of four. For this reason, subjects with
two or more affected relatives were combined for data
analysis. Table 1 gives the distribution of number of
cases and person-years of risk, stratified by NIST, age,
and birth-year. Mantel-Haenszel RR and 95% CI are
also presented.

Familial standardised incidence ratio

The second measure of familial aggregation we used
was a modification of the FSIR'. The FSIR is derived
from the complete risk experience of all observable bio-
logical relatives, adjusted for age, sex, number and
shared inheritance with the subject. Formally, FSIR is
defined in terms of the kinship coefficient'! c(iyj)
between individuals i and j, which gives the probability
that two individuals share randomly selected genes at a
given locus by common descent. The kinship coefficient
is defined by

i) = (1/2) 3 27

where P, ; is the total number of distinct shortest paths
through a common ancestor between individuals i and j,
and I(p) is the length in number of reproductive events
of the path p.

A simple case is the one in which the subjects with
indices i and j are full siblings. In this case, there are
two paths of length two between the subjects, one
through the father and one through the mother, and c(i,j)
= (1/2)(272 + 27%) = 0.25. For another common exam-
ple, consider the case in which the individuals labeled {
and j are first cousins. In the most typical case, there is
exactly one pair of shared grandparents, with the other
pairs of grandparents distinct and unrelated to each
other or the shared pair. In this case, there are two paths
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of length four between individuals i and j and c(i,j) =
(1/2)(2=4+27%) = 1/16. The relevant reproductive events
in this case are the ones corresponding to subjects i and
Jj, and the reproductive events for the parent of subject i
and the parent of subject j that are siblings. Finally, we
suppose that we have a stratified population; the number
of strata is K, the population incidence in the kth stratum
is given by A,, and let 7, be the time that the jth person
spent in the kth stratum of risk. Let /, = 1 if the jth
member has the disease and O otherwise. The FSIR is
then defined, for the ith individual, by:

DLt )

J#E

FSIR, = ———— 2)

33t )

k=1 j#i

The sum for the index j runs over all related individuals
in the pedigree (excluding subject i).

In deriving a measure of variance VAR, for FSIR,, it
was assumed that the denominator of the above expres-
sion is fixed, and that for each fixed path length the
number of observed cases follows a Poisson distribution
with mean equal to the expected number of cases in the
stratum. For this study, risk was stratified by age and
gender.

A difficulty with using the ‘raw’ FSIR scores is that
the amount of information from which it is constructed
for a particular individual is highly variable. A low
FSIR score could be an indicator of low risk, or simply
reflect a small family size. We therefore chose to adjust
the scores using an empirical Bayes procedure before
incorporating them into a regression analysis. As the
raw FSIR scores are highly skewed, we applied the
empirical Bayes procedure to log(1+log(l+FSIR)).
The basic assumption of the empirical Bayes adjustment
is that the ‘true’ values y, of log(1+log(1+FSIR)) are
normally distributed. The mean and variance of u are
estimated empirically and iteratively from the data. The
procedure we use is similar to the one suggested by
Greenland and Robins'2,

More specifically, we suppose that after iteration
n—1 we have current estimates o and Oim for the
true value of log(1+log(1+FSIR)) for the ith individual,
as well as an overall mean o and variance g,_, for
the x, We then computed new estimates using the
formula

2
n—1
0.2 + 0-2 )(Yl _/un*l) (3)

n—1 in—1

Iui,n =lun—l +(

where Y= log(1+log(1+FSIR)), with variance estim-
ated by:

VAR,
2 !

0'. =
" XD XP(ExP (s, )= 1)

(4)

given by the delta method. We then computed the sam-
ple mean and variance of u, ,, over all the subjects to get
4, and 0,21. The iteration was repeated until the values
stabilised.

The distribution of log(1+log(1+ FSIR)), before and
after transformation, is displayed in Figure 1. Note that
the ‘raw’ distribution is bimodal, with a mode at zero
that disappears after transformation.
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Fig. 1 The distribution of log(1+log(1+FSIR)) before (A) and
after (B) empirical Baves adjustment.

The inverse of the transformation log(1+1og(1 + FSIR))
was then used to adjust FSIR. We then divided the
adjusted FSIR into ‘Low’, ‘Medium’ and ‘High’ risk
categories, containing the same fraction of the data as
the corresponding categories of N1ST. Table 2 gives the
distribution of cases and person-years, stratified by
adjusted FSIR, age and birth-year. Mantel-Haenszel RR
and 95% CI are also presented.
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Regression methods

Two regression methods were used to analyse the data.
The first was a standard Poisson regression method,
using the grouped data presented in Tables 1 and 2. The
data was further stratified into S-year birth-year inter-
vals. Let d, ik and n,;, be the number of cases and
person-years of risk for stratum (i,j,k), where i indexes
age, j indexes birth-year, and k indexes familial risk
(either N1ST or adjusted FSIR). Let BYj be the midpoint
of the jth birth-year category. The final Poisson regres-
sion models took the form:

log(di’j] Q= log(nl.,j‘ Qo+ ﬁlog(BYj) +7, (5)

A mode] was also considered with interaction terms 7, ,
between age and familial risk. The interaction terms
were found to be insignificant both with N1ST (32
= 31.14 on 22 degrees of freedom, p = 0.093) and with
adjusted FSIR (¥? = 20.68 on 23 degrees of freedom, p
= 0.60) as measures of familial risk. We therefore
chose for simplicity to leave the interaction term out of
our final model.

Since individual level data were available for this
study, survival analysis methods were appropriate, and
potentially more efficient than methods for aggregate
data. In addition, it was possible to handle predictors in a
truly continuous fashion, and obtain a smooth estimate of
the age-dependent risk. We wished for the analysis to be
essentially nonparametric, we therefore modelled the
hazard via a quadratic spline'3. A quadratic spline takes
the form of a polynomial of second degree between suc-
cessive break points 7, called ‘knots’. A quadratic spline
with m knots specifies the hazard to be of the form:

R = Dopgitt + Dt — T2 ©)
i=0 =1

where () , = max(y,0). The spline is a continuous func-
tion with continuous first derivative.
We fit splines with knots that were equally spaced in

the interior of the interval [Tmm,Tmax], where T, is the
minimum age of any subject in 1965, and T the maxi-

nmax
mum follow-up (failure or censoring) time. Thus, with

m knots the number of parameters was m+3. As the
number of knots increases, the fit becomes increasingly
nonparametric. Since the number of knots was not speci-
fied in advance, the analysis was nonparametric in char-
acter. The data described are subject to random
truncation: cases that occurred during or before 1965 are
not recorded in the dataset. Subjects were between the
ages of 34-86 at the time of truncation. In the more
familiar clinical setting in which survival analysis is
used, time is set to zero for all patients at the time of
diagnosis or treatment, so truncation is not an issue. The

truncation is taken into account in Poisson regression
and in the calculation of FSIR scores, by appropriately
adjusting the number of subjects in the risk-set. Thus,
analysis of the data must take into account not only the
effects of right censoring, but also the effects of left
truncation due to delayed entry into the risk-set. The
truncation was handled by using a conditional likeli-
hood; conditioning on the event that the age at breast
cancer was greater than the age at which as subject
entered the risk-set. The spline regression models all
contained the logarithm of birth-year as a continuous
covariate, in addition to a measure of familial risk.

More specifically, let X be the observed failure or cen-
soring age, let Ybethe age at truncation and letd be acensor-
ing indicator (6=1 if the failure is observed and 5=0
otherwise). Let s~ be a vector of covariates and z~ a vector
of parameters. Let A(x,s”;z ") denote the hazard associated
with the failure time-distribution F(x,s;z”) and A(x,
57;z”) the cumulative hazard for F(x,s”;z”). Letiindex the
subjects. Thelikelihood, conditional on X > Y, becomes:

log(CL) =
2006, 1og(Ax, 53 ) — (AG, 5:5) = AG S 2] (D)

The proportional hazards model A(x,s,Z)=exp(s'2Z)Ay(x)
was used to model covariate effects (the logarithm of
birth year and family history). '
The spline estimates were computed by maximizing
the logarithm of the conditional likelihood using the
algorithm of Powell'*. We started with one knot and
increased the number of knots until the fit was not
improved, using the log-likelihood as a guide. This
occurred when there were three knots. We thus used
three knots for all the results in the following section.

Results

Estimates of RR

Tables 3 and 4 present estimates of the RR and 95% CI
for ‘Moderate’ and ‘High’ risk categories of N1ST and
FSIR, compared with the ‘Low’ risk category, using
each of the three methods presented in the previous sec-
tion. The Mantel-Haenszel, Poisson, and spline-based
estimates are in remarkably good agreement. We see
that the ‘Moderate’ risk categories of both N1ST and
FSIR confer an approximate 1.75-fold increased risk.
The ‘High’ risk category of N1ST confers an approxi-
mate 2.0-fold increased risk, while the ‘High’ risk cate-
gory of FSIR confers an approximate 2.8-fold RR. FSIR
appeared to identify subjects with higher than the ‘Mod-
erate’ level of risk. The ‘High’ and ‘Moderate’ risk cate-
gories of N1ST, on the other hand, have almost the same
estimated risk. As judged by the length of the CI, there
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Table 3 RR, 95% CI, and y? values for N1ST, computed using the Mantel-Haenszel, Poisson regression and a spline

regression method

Category Model
Mantel-Haenszel Poisson Spline
Estimate MH »? Estimate Wald ;2 Estimate LR 2
NiST=0 1 - 1 - 1 -
NIST =1 1.75 (1.61-1.89) 13.80 1.76 (1.62-1.90) 186.91 1.75 (1.61-1.90) -
NIST = 2+ 2.01 (1.59-2.54) 6.00 2.04 (1.61-2.57) 35.82 2.03 (1.58-2.56)  186.922

See the text for details. All the methods adjust for birth-year and age and have the lowest level as reference category.
2Two df likelihood ratio y? for inclusion of both (N1ST = 1) and (N1ST = 2).

Table 4 RR, 95% CI, and y? values for FSIR, computed using the Mantel-Haenszel, Poisson regression and a spline

regression method

Category Model
Mantel-Haenszel Poisson Spline
Estimate MH »2 Estimate Wald »2 Estimate LR »2
Low FSIR 1 - 1 - 1 -
Moderate FSIR 1.74 (1.60-1.89) 13.92 1.67 (1.65-1.93) 188.77 1.78 (1.65-1.93) -
High FSIR 2.89 (2.35-3.56) 10.05 2.83 (1.17-3.46) 93.99 2.83(2.27-346)  227.02¢

See the text for details. All the methods adjust for birth-year and age and have the lowest level as reference category.
*Two df likelihood ratio 2, or inclusion of both ‘Moderate FSIR’ and ‘High FSIR’.

appears to be little gain in efficiency for estimation of
the RR from the regression method using splines.

More than 90% of subjects have no affected first-
degree relatives, and thus must be lumped together in
the ‘Low’ risk category. To explore the affect of this cat-
egorisation further, we fit a model with FSIR treated as
a continuous predictor, as well as log(birth-year), to the
subset consisting only of those subjects with NIST = 0.
For comparison, we fit a similar model to the entire
dataset. FSIR was a highly significant predictor of risk,
even when restricted to the subjects with no affected
first-degree relative, with significance p < 0.00001 as
measured by the likelihood ratio test (with the logarithm
of birth-year also in the reference model). The parame-
ter estimate for FSIR from the restricted data was 1.11
(95% CI 0.91-1.31). This model corresponds to an
approximate three-fold range of risk in the subjects with
NIST = 0. By comparison, the parameter estimate for
the entire data set was 1.45 (95% CI 1.29-1.62), which
corresponds to an approximate 5-fold range of risk over
the entire dataset. Thus, there appears to be a significant
range of familial risk among the subjects with no affec-
ted first-degree relatives. The estimated range of risk is
higher using FSIR as a continuous variable.

Estimation of the age-dependent risk
Estimates of the age-dependent risk for breast cancer for
the 190105 birth cohort are presented in Figure 2. The

estimates for the ‘Low’ level of risk using Nlst and
FSIR are essentially identical. The estimates from
Poission regression and the spline model are in good
agreement. Figure 3 shows the effect of birth-year on
the ‘Low’ category of risk, using only the spline models
containing FSIR. The crude estimates of risk are also
presented in Figure 3 for comparison. Adding one to the
birth-year corresponded to an approximate 2.7%
increase in risk (95% CI 2.4-3.1%), with FSIR in a
Poisson regression model. Using the spline model with
FSIR the estimated increase in risk per year is 3.5%
(95% CI 3.2-3.9%). Some of this difference may be due
to the slightly different way in which birth-year was
incorporated into the models.

The crude estimate shows a decrease in risk near ages
50-55 that all but disappears after adjusting for birth-
year. There is also a less pronounced decrease in the
crude risk near age 90 that also disappears after adjust-
ment for birth-year. There is little evidence for a
decrease in risk up to the age of 95 or 100. More recent
birth cohorts appear to be at significantly increased risk
compared to earlier birth cohorts.

Discussion

We have applied two methods of measuring familial
aggregation at the individual level to breast cancer data.
As might be expected, both prove to be highly signifi-
cant predictors of individual risk of breast cancer. FSIR




384 KM BOUCHER AND RA KERBER
1000
100 F A
T !
8 | w =
1= =}
8 100 | S
- —
] — Low Risk-Spline 5 100
o o Low Risk-Poisson o
% - - Moderate Risk-Spline 8
% 10 & Moderate Risk-Poisson {G |
[ S N I High Risk-Spline O ’1 __Spline Esti
. ; X 932 pline Estimate
o High Risk-Poisson — Crude Estimate
1 1 1. 1 1 1 1 10 1 1 1 1 i 1
35 45 55 65 75 85 95 35 45 55 65 75 85 95
AGE AGE
1000 F B e Fig. 3 The age—d()p(’nd(.)nr risk for Ilw. lowest llevel of FS.IR,
estimated for several birth cohorts using a spline regression
o model. The crude estimate from the tabulated data, which is
8 not adjusted for birth-vear, is also presented for comparison.
8 100
e
éT_: — Low Risk-Spline ]
- u Low Risk—Poisson cancer appears to be non-decreasing through age 95.
o - -~ Moderate Risk-Spline . o . . N
@ 10 f & Moderate Risk-Poisson Thus, we find no evidence of an ‘immunc fraction’ for
[ 2 [ High Risk—Spline A e . . N
o High Risk—Poisson breast cancer. First, the lowest level of N1ST appears to
have a high degree of variability of familial risk. Sec-
1 . s . . . ' ondly, the age-dependent risk is the lowest category of
35 45 55 65 75 85 95 NI1ST or FSIR and shows no evidence of a peak in risk

AGE

Fig. 2 The age-dependent risk for breast cancer for the
1901-05 birth cohort, estimated from Poisson regression and a
spline regression model. Estimates are presented using N1ST
(A) and FSIR (B) as predictors of familial risk.

appeared to perform better, however, at identifying
small fractions of subjects at the highest risk. This also
may not be surprising, since FSIR is adjusted for the
expected number of cases in the relatives of the subject.

In addition, by performing a restricted analysis using
FSIR as a predictor in the subset of subjects with no
affected first-degree relatives, we see that N1ST doces
not appear to contain enough information to separate out
individuals at increased risk. Thus, a measure that incor-
porates the observed risk of a wider class of relatives
seems warranted.

Methods for aggregate data, such as the Poisson regres-
sion method, perform remarkably well compared to the
spline regression we used, as long as the data is cate-
gorised similarly in the models. Any advantage for the
spline model appears to be in the ability to treat variables
in a truly continuous way. These advantages allow for
more complicated modeling strategies, not exploited in
the present paper, such as accelerated failure time models.

As an interesting by-product of the analysis, we find
that, with the exception of a possible slight decrease in
risk between the ages of 50 and 60, the risk for breast

followed by a drop, which would be the case if suscepti-
ble individuals were contracting breast cancer and being
removed from the population, thus increasing the
immune fraction in the surviving population.

Other investigators have either estimated or simply
assumed that the risk of breast cancer decreases past a
certain age. As previously noted, Moolgavkar et al.®,
found the hazard function to decrease sharply starting
sometime past the age of 70. By age 90, the risk has
decreased to about 1/3 of the peak. Parmigiani et al.'?
fit breast-cancer incidence data from Easton et al.'® to
a three parameter gamma distribution. Implicit in this
fitting procedure is the assumption that the risk to car-
riers of BRCA] and BRCA2 decreases to zero with age.
There is little evidence for this in the data used by
Parmigiani et al., as the highest age is 70. It may be
important for further efforts at risk prediction to better
understand the hazards to carriers of disease suscepti-
bility genes, particularly at more advanced ages, where
data arc sparse.
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